RESUMEN
The intracellular mechanisms of slow shortening in isolated guinea pig cochlear outer hair cells were investigated using inhibitors and/or an activator of protein kinases and protein phosphatases. The slow shortening was induced by tetanic electrical field stimulation, and changes in the cell length, volume and intracellular Cl- concentration were microscopically monitored using a chloride-sensitive fluorescent dye. The slow shortening was inhibited by a calmodulin inhibitor, W-7, and a calcium calmodulin-dependent protein kinase II (CaMKII) inhibitor, KN-62. The inhibition by W-7 or KN-62, was abolished by the supplemented conductance of K+ with valinomycin. Among the protein phosphatase inhibitors tested, a type 1 and 2A protein phosphatase inhibitor, calyculin A, inhibited the slow shortening. The inhibition by calyculin A was abolished by the increased Cl- permeability, but neither by the increased K+ conductance with valinomycin nor by the increased Ca2+ conductance with A23187. A protein serine/threonine phosphatase activator, N-acetylsphingosine, inhibited the shortening, which was abolished by either valinomycin or a type 2A protein phosphatase inhibitor, okadaic acid, but not by calyculin A. These findings suggest the following signaling mechanisms in the slow shortening of outer hair cells; the K+ channel opening is facilitated through protein phosphorylation by CaMKII and suppressed via okadaic acid-sensitive dephosphorylation, and the Cl- channel opening depends on calyculin A-sensitive protein phosphatase activity.