Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fitoterapia ; 175: 105927, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548028

RESUMEN

STAT3 is a crucial member within a family of seven essential transcription factors. Elevated STAT3 levels have been identified in various cancer types, notably in breast cancer (BC). Consequently, inhibiting STAT3 is recognized as a promising and effective strategy for therapeutic intervention against breast cancer. We herein synthesize a library of isoxazole (PAIs) from piperic acid [2E, 4E)-5-(2H-1,3-Benzodioxol-5-yl) penta-2,4-dienoic acid] on treatment with propargyl bromide followed by oxime under prescribed reaction conditions. Piperic acid was obtained by hydrolysis of piperine extracted from Piper nigrum. First, we checked the binding potential of isoxazole derivatives with breast cancer target proteins by network pharmacology, molecular docking, molecular dynamic (MD) simulation and cytotoxicity analysis as potential anti-breast cancer (BC) agents. The multi-source databases were used to identify possible targets for isoxazole derivatives. A network of protein-protein interactions (PPIs) was generated by obtaining 877 target genes that overlapped gene symbols associated with isoxazole derivatives and BC. Molecular docking and MD modelling demonstrated a strong affinity between isoxazole derivatives and essential target genes. Further, the cell viability studies of isoxazole derivatives on the human breast carcinoma cell lines showed toxicity in all breast cancer cell lines. In summary, our study indicated that the isoxazole derivative showed the significant anticancer activity. The results highlight the prospective utility of isoxazole derivatives as new drug candidates for anticancer chemotherapy, suggesting route for the continued exploration and development of drugs suitable for clinical applications.


Asunto(s)
Ácidos Grasos Insaturados , Isoxazoles , Simulación del Acoplamiento Molecular , Factor de Transcripción STAT3 , Neoplasias de la Mama Triple Negativas , Humanos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Isoxazoles/farmacología , Isoxazoles/química , Línea Celular Tumoral , Estructura Molecular , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/aislamiento & purificación , Ácidos Grasos Insaturados/química , Farmacología en Red , Simulación de Dinámica Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación
2.
Prep Biochem Biotechnol ; 51(10): 1026-1035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33687315

RESUMEN

Bimetallic or alloy nanoparticles (NPs) have improved properties compared to their monometallic forms. Microalgae being rich in biocompatible reductants and being ecofriendly are potential sources to synthesize fuctionalized NPs. In this study, biosynthesis of silver, gold, and bimetallic NPs was carried out via bioreduction using aqueous extract of algal isolate Chlorella acidophile, inhabitant of non-arable land. C. acidophile is known to contain highly bioactive functional moieties, which can serve as nanobiofactories for metallic NPs. Various characterization techniques viz, UV-visible spectrophotometer, X-ray diffraction analysis, X-ray photo-electron spectroscopy, and Raman spectroscopy were employed to determine their composition, structure, and crystal phase. The monometallic and bimetallic particles were found to be crystalline state and generally in a spherical shape. Their size ranged from 5 to 45 nm and the corresponding FTIR spectra indicated that the specific organic functional groups from algal extract were involved in the bio-reduction. Furthermore, the core-shell in the case of Au-Ag NPs was formed due to the simultaneous reduction of gold and silver ions. An enhanced and more pronounced Raman spectra of Au-Ag NP compared to individual Au NP indicated the improved properties of bimetallic NPs, the latter having been of immense potential to be used as sensors in industries.


Asunto(s)
Aleaciones/química , Chlorella/química , Oro/química , Nanopartículas del Metal/química , Plata/química , Tecnología Química Verde , Nanotecnología , Extractos Vegetales/química
3.
Biomed Res Int ; 2020: 1608942, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766303

RESUMEN

BACKGROUND: Apoptosis, a major form of programmed cell death, plays a vital role in regulating tissue development and maintenance of homeostasis in eukaryotes. Apoptosis can occur via a death receptor-dependent extrinsic or a mitochondrial-dependent intrinsic pathway and can be induced by various chemotherapeutic agents. In this study, the anticancer activity of Saussurea costus and its mode of intervention in human cancer cells of breast, colon, and liver were investigated. RESULTS: In this study, the bioactives of S. costus leaves were extensively extracted in five solvents of different polarity. The cytotoxicity and anticancer effect of the extracted secondary metabolites were investigated against breast (MCF-7), liver (HepG2), and colon (HCT116) cancer cell lines using a Sulphorhodamine B (SRB) assay. Secondary metabolites extracted using hexane, methanol, ethyl acetate, and chloroform had the highest cytotoxicity and thus the greatest anticancer effect on all the cancer cell lines tested (IC50; ranging from 0.25 to 2.5 µg/ml), while butanol was comparatively less active (IC50; ranging from 23.2 to 25.5 µg/ml). Further investigation using DNA flow cytometry and fluorescent microscopy revealed that the extract arrested the cells in the G1 phase of cell cycle and induced apoptosis. Furthermore, the elevated expression level of proapoptotic proteins and decreased expression level of antiapoptotic proteins confirmed that the intrinsic (mitochondrial) pathway was involved in mediating the apoptosis of cancer cells upon treatment with S. costus extract. These results altogether suggest that S. costus could be a potential anticancer agent. CONCLUSION: These results suggest that the S. costus extract is the potential source of the secondary metabolites that could be used as anticancer agent to treat diverse cancers of breast, colon, and liver.


Asunto(s)
Neoplasias de la Mama/patología , Caspasa 3/metabolismo , Neoplasias del Colon/patología , Neoplasias Hepáticas/patología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Saussurea/química , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Ciclo Celular , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Metaboloma , Hojas de la Planta/química , Células Tumorales Cultivadas
4.
BMC Complement Med Ther ; 20(1): 86, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183818

RESUMEN

BACKGROUND: Myrtus communis is a typical plant of Mediterranean area. The different parts of this plant such as berries, branches, and leaves have been used worldwide as a traditional/folk medicine for the treatment of various ailments and diseases. METHODS: Ethanolic leaf extract of the plant was prepared by Soxhlet extraction method. Zone of inhibition, minimum inhibitory concentration and minimal bactericidal concentration were determined by well diffusion method and microplate alamar blue assay. GC-MS analysis was carried out to identify the compounds present in the extract. Microscopy and ImageJ software were used respectively for morphology and cell-length measurements. GraphPad Prism was used for statistical analysis. RESULTS: The ethanolic extract showed strong inhibitory effect against Gram-positive and acid-fast bacteria with significant inhibition-zone size (9-25 mm), MIC (4.87-78 µg/ml), as well as MBC (0.3-20 mg/ml). However, no effect was observed on the growth of Gram-negative bacteria. The growth inhibition was found to be associated with the damage of cell wall as the extract-treated cells were sensitive to cell wall-targeting antibiotics and displayed the cell wall damage-depicting morphological defects. GC-MS analysis confirmed the presence of novel compounds in addition to the most representative compounds of the essential oils/extracts of M. communis of other country origins. CONCLUSION: These results demonstrate that M. communis leaf extract could be the source of compounds to be used for the treatment of Gram-positive bacterial infections. This is the first report, which provides insights into the mechanism of action of the extract in inhibiting the growth of Gram-positive bacteria.


Asunto(s)
Antibacterianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Myrtus/química , Extractos Vegetales/farmacología , Antibacterianos/química , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Hojas de la Planta/química , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA