Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675212

RESUMEN

Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Hipotálamo , Termogénesis , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Ácidos Oléicos/metabolismo , Termogénesis/genética , Termogénesis/fisiología
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948254

RESUMEN

Obesity has now reached pandemic proportions and represents a major socioeconomic and health problem in our societies [...].


Asunto(s)
Hipotálamo/metabolismo , Obesidad/fisiopatología , Metabolismo Energético , Humanos , Hipotálamo/fisiopatología
3.
Cell Mol Life Sci ; 78(23): 7469-7490, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718828

RESUMEN

The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.


Asunto(s)
Endocannabinoides/metabolismo , Hipotálamo/patología , Obesidad/patología , Receptores de Cannabinoides/metabolismo , Animales , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Obesidad/etiología , Obesidad/metabolismo
4.
J Lipid Res ; 60(7): 1260-1269, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31138606

RESUMEN

The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral ß3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Endocannabinoides/metabolismo , Hipotálamo/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Femenino , Glicéridos/metabolismo , Masculino , Ratones , Alcamidas Poliinsaturadas/metabolismo , Caracteres Sexuales
5.
Mol Metab ; 19: 75-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448371

RESUMEN

OBJECTIVE: Carnitine palmitoyltransferase 1C (CPT1C) is implicated in central regulation of energy homeostasis. Our aim was to investigate whether CPT1C in the ventromedial nucleus of the hypothalamus (VMH) is involved in the activation of brown adipose tissue (BAT) thermogenesis in the early stages of diet-induced obesity. METHODS: CPT1C KO and wild type (WT) mice were exposed to short-term high-fat (HF) diet feeding or to intracerebroventricular leptin administration and BAT thermogenesis activation was evaluated. Body weight, adiposity, food intake, and leptinemia were also assayed. RESULTS: Under 7 days of HF diet, WT mice showed a maximum activation peak of BAT thermogenesis that counteracted obesity development, whereas this activation was impaired in CPT1C KO mice. KO animals evidenced higher body weight, adiposity, hyperleptinemia, ER stress, and disrupted hypothalamic leptin signaling. Leptin-induced BAT thermogenesis was abolished in KO mice. These results indicate an earlier onset leptin resistance in CPT1C KO mice. Since AMPK in the VMH is crucial in the regulation of BAT thermogenesis, we analyzed if CPT1C was a downstream factor of this pathway. Genetic inactivation of AMPK within the VMH was unable to induce BAT thermogenesis and body weight loss in KO mice, indicating that CPT1C is likely downstream AMPK in the central mechanism modulating thermogenesis within the VMH. Quite opposite, the expression of CPT1C in the VMH restored the phenotype. CONCLUSION: CPT1C is necessary for the activation of BAT thermogenesis driven by leptin, HF diet exposure, and AMPK inhibition within the VMH. This study underscores the importance of CPT1C in the activation of BAT thermogenesis to counteract diet-induced obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Obesidad/metabolismo , Adiposidad , Animales , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos , Metabolismo Energético , Homeostasis , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA