Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aquat Toxicol ; 261: 106582, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37369158

RESUMEN

During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pruebas de Toxicidad/métodos , Contaminación por Petróleo/análisis , Agua/química
2.
Environ Sci Technol ; 57(25): 9266-9276, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267462

RESUMEN

Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos/química , Lagos/química , Alcanos , Ontario , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 790: 148537, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34215441

RESUMEN

Large-scale, in-lake enclosures (limnocorrals) were used to simulate spills of diluted bitumen (dilbit) in a boreal lake. In this study we use these simulated spills, which covered a range of sizes (oil:water ratio) representative of the upper 25% of onshore crude oil spills in North America (2008-2019), to assess the fate of dilbit-derived hydrocarbons and metals as well as the impacts of the spills on standard water quality parameters. The systems were monitored over 70 days following the application of dilbit amounts ranging between 1.5 and 179.8 L into 10-m diameter, ~100 m3 limnocorrals. The concentration of total petroleum hydrocarbons (TPH) in the water column increased rapidly over the first two weeks reaching a plateau that ranged between 200 µg/L and 2200 µg/L for the lowest and highest treatment respectively. The concentration of total polycyclic aromatic compounds (PACs) also increased over the first two weeks, prior to a slow decrease until day 70. The maximum measured concentrations in the highest treatment were 2858 ng/L for the sum of all 46 quantified PACs, 2716 ng/L for alkylated PACs and 154 ng/L for the 16 EPA priority PAHs. The concentrations of PACs in the sediment increased continuously over the study in the three highest treatments with maximum observed concentrations of 189 ng/g for ΣPAC46, 169 ng/g for ΣPACalk. No significant treatment-related changes in the 16 EPA priority PAHs were observed in the sediment. Of the 25 metals quantified in the water column, only manganese, molybdenum, and vanadium displayed a significant treatment effect with increases of 280, 76 and 25% respectively in the total fraction. These results can help us understand and predict the fate of oil-derived contaminants following a spill and characterize the exposure of freshwater organisms living within them. These results should help inform the risk assessment of future dilbit transportation projects.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos , Lagos , Petróleo/análisis , Proyectos de Investigación , Contaminantes Químicos del Agua/análisis , Calidad del Agua
4.
Chemosphere ; 208: 185-195, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29864709

RESUMEN

The characterization of spilled petroleum products in an oil spill is necessary for identifying the spill source, selection of clean-up strategies, and evaluating potential environmental and ecological impacts. Existing standard methods for the chemical characterization of spilled oils are time-consuming due to the lengthy sample preparation for analysis. The main objective of this study is the development of a rapid screening method for the fingerprinting of spilled petroleum products using excitation/emission matrix (EEM) fluorescence spectroscopy, thereby delivering a preliminary evaluation of the petroleum products within hours after a spill. In addition, the developed model can be used for monitoring the changes of aromatic compositions of known spilled oils over time. This study involves establishing a fingerprinting model based on the composition of polycyclic and heterocyclic aromatic hydrocarbons (PAH and HAHs, respectively) of 130 petroleum products at different states of evaporative weathering. The screening model was developed using parallel factor analysis (PARAFAC) of a large EEM dataset. The significant fluorescing components for each sample class were determined. After which, through principal component analysis (PCA), the variation of scores of their modeled factors was discriminated based on the different classes of petroleum products. This model was then validated using gas chromatography-mass spectrometry (GC-MS) analysis. The rapid fingerprinting and the identification of unknown and new spilled oils occurs through matching the spilled product with the products of the developed model. Finally, it was shown that HAH compounds in asphaltene and resins contribute to ≥4-ring PAHs compounds in petroleum products.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Contaminación por Petróleo/análisis , Petróleo/análisis , Análisis de Componente Principal/métodos , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Análisis Factorial
5.
Chemosphere ; 191: 145-155, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29032259

RESUMEN

In this study, the water accommodated and particle-laden hydrocarbon species, and the toxicity of the aqueous phase after oil-sediment interactions by varying the weathering states of diluted bitumen (Cold Lake blend (CLB)), oil type from light to heavy, and sediment type. Compared to the original oils, the sediment-laden total petroleum hydrocarbons (TPH) contained fewer hydrocarbons in the carbon range C34 range. Sediment-laden oil amounts generally decreased with an increased viscosity and asphaltene content of the test oils, as well as with increased sediment particle size. The presence of sediments significantly decreased the oil accommodated in water due to the formation of oil particulate aggregates (OPA) after mixing and settling. Less water accommodated TPH and polycyclic aromatic hydrocarbons (PAHs) were observed for weathered CLB products. However, oil and sediment types did not clearly affect the water accommodated TPH and PAHs. Light molecular PAHs and their alkylated congeners accounted for most of the water accommodated PAH congeners. A microtoxicity test demonstrated that with or without sediment, and regardless of sediment type, the toxicity of the water phase did not change significantly. Light oil of Alberta sweet mixed blend (ASMB) had the highest toxicity, followed by fresh CLB, and then all other oils, suggesting that ASMB and fresh CLB had relatively higher levels of light toxic components dissolved in the water phase compared with the other tested oils.


Asunto(s)
Hidrocarburos/química , Contaminación por Petróleo , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Alberta , Hidrocarburos/toxicidad , Lagos , Aceites , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos , Agua/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Tiempo (Meteorología)
6.
Environ Pollut ; 230: 609-620, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28710979

RESUMEN

The ability to characterize the composition of emerging unconventional Bakken tight oil is essential to better prepare for potential spills and to assess associated environmental concerns. The present work measured and compared the physical and chemical properties of Bakken crudes with conventional crude oils from various regions and different types of refined petroleum products. The physicochemical properties of Bakken crude are overall similar to those of conventional light crudes. The Bakken crude consists of high concentrations of monoaromatic hydrocarbons and alkylated PAHs with a clear dominance of the alkylated naphthalene homologues followed by the phenanthrene series. Its pyrogenic index (PI) values are considerably lower than typical conventional crude oils. The Bakken crude oils in this study exhibit a low abundance of petroleum biomarker such as terpanes, steranes and diamondoids and bicyclic sesquiterpanes. Since tight oil from the Bakken region is produced from low-permeability formations, variations in abundance and diagnostic ratios of common target petroleum hydrocarbons were found among these oils.


Asunto(s)
Contaminación por Petróleo/análisis , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes Químicos del Agua/química , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA