Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Adv ; 9(8): eabq6718, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812308

RESUMEN

Asprosin, a recently identified adipokine, activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARH) via binding to protein tyrosine phosphatase receptor δ (Ptprd) to increase food intake. However, the intracellular mechanisms responsible for asprosin/Ptprd-mediated activation of AgRPARH neurons remain unknown. Here, we demonstrate that the small-conductance calcium-activated potassium (SK) channel is required for the stimulatory effects of asprosin/Ptprd on AgRPARH neurons. Specifically, we found that deficiency or elevation of circulating asprosin increased or decreased the SK current in AgRPARH neurons, respectively. AgRPARH-specific deletion of SK3 (an SK channel subtype highly expressed in AgRPARH neurons) blocked asprosin-induced AgRPARH activation and overeating. Furthermore, pharmacological blockade, genetic knockdown, or knockout of Ptprd abolished asprosin's effects on the SK current and AgRPARH neuronal activity. Therefore, our results demonstrated an essential asprosin-Ptprd-SK3 mechanism in asprosin-induced AgRPARH activation and hyperphagia, which is a potential therapeutic target for the treatment of obesity.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Obesidad , Humanos , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/farmacología , Núcleo Arqueado del Hipotálamo/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Adipoquinas/metabolismo , Fibrilina-1/metabolismo
2.
Physiol Behav ; 207: 167-178, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31082443

RESUMEN

We investigated at the transcriptional level the role of daily rhythm in melatonin secretion in seasonal responses in the migratory blackheaded bunting (Emberiza melanocephala), which when exposed to short (SP) and long (LP) photoperiods exhibits distinct seasonal life-history states (LHSs). We reproduced the seasonal LHS by subjecting buntings to SP (8 h light: 16 h darkness, 8 L:16D), which maintained the nonmigratory/ nonbreeding phenotype, and to LP (16 L:8D), which induced the premigratory/ prebreeding, migratory/ breeding and nonmigratory/ postbreeding phenotypes. Plasma melatonin measured at 4 h intervals showed loss of the daily rhythm in the LP-induced premigratory/ prebreeding and migratory/ breeding LHSs. Subsequently, mRNA expression of genes coding for the aryl-alkamine-N-acetyltransferase (AANAT; the rate-liming enzyme of melatonin biosynthesis) and for the receptors for melatonin (Mel1A, Mel1B and Mel1C) was examined in the retina, pineal and hypothalamus; the interacting independent circadian clocks comprising the songbird circadian timing system. Except AANAT that was not amplified in the hypothalamus, we found significant alterations in both, the level and persistence of 24 h rhythm in mRNA expression of all genes, albeit with photoperiod and seasonal differences between three circadian clock tissues. Particularly, 24 h mRNA expression pattern of all genes, except retinal Mel1A, lacked a significant daily rhythm in the LP-induced migratory/ breeding LHS. These results underscore the overall importance of the circadian rhythm in the role of melatonin in photoperiodically-controlled seasonal responses in migratory songbirds.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/biosíntesis , N-Acetiltransferasa de Arilalquilamina/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Expresión Génica/genética , Expresión Génica/fisiología , Melatonina/metabolismo , Receptores de Melatonina/biosíntesis , Receptores de Melatonina/genética , Estaciones del Año , Pájaros Cantores/fisiología , Migración Animal/fisiología , Animales , Química Encefálica/genética , Química Encefálica/fisiología , Cruzamiento , ADN Complementario/biosíntesis , ADN Complementario/genética , Hipotálamo/metabolismo , Masculino , Fotoperiodo , ARN Mensajero/biosíntesis , ARN Mensajero/genética
3.
J Neuroendocrinol ; 30(9): e12627, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29908087

RESUMEN

Circannual rhythm regulates the annual timing of reproduction in spotted munia, with sex differences in its relationship with the external photoperiod environment. Interestingly, munia show an atypical photosensitivity and exhibit gonadal maturation when acutely exposed to an unnatural short photoperiod (eg 3 hours of light per day; ie a long scotoperiod). The proximate mechanisms regulating scotoperiod-induced hypothalamic-pituitary-gonadal (HPG) activation are unclear. Because thyroid hormone signalling plays a central role in photoperiodic induction, we hypothesised the involvement of similar mechanism, comprising alterations in hypothalamic deiodinases, under long scotoperiod-induced HPG activation. To test this, several endpoints of cellular and molecular correlates were assayed in male and female munias after 1 and 4 weeks of exposure to an 3:21 hour light/dark cycle (3L:21D), with controls on a 21:3 hour light/dark cycle (21L:3D). We measured the hypothalamic expression of mRNA and protein of light-sensitive (neuropsin, OPN5) and reproductive (vasoactive intestinal peptide [VIP], neuropeptide Y [NPY], gonadotrophin-releasing hormone [GnRH], gonadotrophin-inhibiting hormone [GnIH]) neuropeptides by quantitative polymerase chain reaction (PCR) and immunohistochemistry, respectively. In addition, we also measured mRNA expression of types 2 (DIO2) and 3 (DIO3) deiodinases that regulate triiodothyronine-mediated GnRH release and gonadal maturation in photoperiodic species. The quantitative PCR and immunohistochemistry results were consistent. Higher OPN5 levels under 21L:3D than under 3L:21D suggested its role in sensing the length of the light period. Similarly, low VIP and high NPY expression under 3L:21D than under 21L:3D were consistent with their roles as cellular correlates of photic and nonphotic environment, respectively. High GnRH-I/low GnIH levels and gonadal recrudescence under 3L:21D, and an inverse pattern under 21L:3D, confirmed the scotostimulation of HPG axis in spotted munia. However, DIO2 and DIO3 mRNA levels did not differ between 2 scotoperiods, in contrast to their reciprocal expression pattern found during long-day photostimulation. We demonstrate for the first time sex-dependent scotostimulation of reproductive neural pathways and suggest the involvement of molecules other than hypothalamic deiodinases in the regulation of gonad development cycle in 'nonphotoperiodic' seasonally breeding vertebrates.


Asunto(s)
Gónadas/metabolismo , Hipotálamo/metabolismo , Yoduro Peroxidasa/metabolismo , Passeriformes/metabolismo , Maduración Sexual/fisiología , Animales , Femenino , Masculino , Vías Nerviosas/metabolismo , Neuropéptido Y/metabolismo , Fotoperiodo , Reproducción/fisiología , Péptido Intestinal Vasoactivo/metabolismo
4.
Chronobiol Int ; 35(5): 617-632, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29370529

RESUMEN

We investigated if the duration and/or frequency of the light period affect 24-h rhythm of circadian clock genes in central and peripheral tissues of a non-photoperiodic songbird, the spotted munia (Lonchura punctulata), in which a circannual rhythm regulates the reproductive cycle. We monitored activity-rest pattern and measured 24-h mRNA oscillation of core clock (Bmal1, Clock, Per2, Cry1 and Cry2) and clock-controlled (E4bp4, Rorα and Rev-erbα) genes in the hypothalamus, retina, liver and gut of spotted munia subjected to an aberrant light-dark (LD) cycle (3.5L:3.5D; T7, T = period length of LD cycle) and continuous light (LL, 24L:0D), with controls on 24-h LD cycle (T24, 12L:12D). Munia exhibited rhythmic activity-rest pattern with period matched to T7 or T24 under an LD cycle and were arrhythmic with a scattered activity pattern and higher activity duration under LL. At the transcriptional level, both clock and clock-controlled genes showed a significant 24-h rhythm in all four tissues (except Clock in the liver) under 12L:12D, suggesting a conserved tissue-level circadian time generation in spotted munia. An exposure to 3.5L:3.5D or LL induced arrhythmicity in transcriptional oscillation of all eight genes in the hypothalamus (except Rev-erbα) and liver (except Bmal1 and Rev-erbα under T7 and Cry1 under LL). In the retina, however, all genes showed arrhythmic 24-h mRNA expression under LL, but not under T7 (except in E4bp4 and Rorα). Interestingly, unlike in the liver, Bmal1, Per2, Cry1, Rorα and Rev-erbα mRNA expressions were rhythmic in the gut under both T7 (except Rorα) and LL conditions. These results showed variable relationship of internal circadian clocks with the external light environment and suggested a weak coupling of circadian clocks between the central (hypothalamus and retina) and peripheral (liver and gut) tissues. We suggest tissue-level circadian clock regulation of daily physiology and behavior in the spotted munia.


Asunto(s)
Ciclos de Actividad/genética , Proteínas Aviares/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Ritmo Circadiano/genética , Fotoperiodo , Pájaros Cantores/genética , Animales , Proteínas Aviares/metabolismo , Conducta Animal , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Hígado/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Pájaros Cantores/metabolismo , Factores de Tiempo
5.
Neuroscience ; 371: 309-324, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29273324

RESUMEN

This study investigated whether, in photoperiodic songbirds, the circadian pacemaker system (CPS) connects to the seasonal photoperiodic responses, by changes at transcriptional level in the level and 24-h rhythm of its constituent neurotransmitters. We used black-headed buntings (Emberiza melanocephala), which exhibit distinct seasonal states in captivity under appropriate photoperiods and hence served as a useful model system. Under short days, buntings remain in the photosensitive state (Pse) (winter phenotype: non-migratory, non-breeding). Under long days, however, buntings undergo through early-photostimulated (spring phenotype: pre-migratory, pre-breeding), late photostimulated (summer phenotype: migratory, breeding) and photorefractory (autumn phenotype: post-breeding) states. During all four seasonal states, we measured in the retina, pineal and hypothalamus, which together form avian CPS, 4-hourly mRNA expression of c-fos (a neuronal-activity marker) and of genes coding for neuropeptides (vasoactive intestinal peptide, vip; somatostatin, sst; neuropeptide Y, npy) and for intermediary enzymes of amino acid (glutamate: glutaminase, gls and glutamic-oxaloacetic transaminase 2, got2; GABA: glutamic acid decarboxylase, gad65) and amine (dopamine: tyrosine hydroxylase, th) neurotransmitters biosynthetic pathway. There was a significant alteration in level and 24-h pattern of mRNA expression, albeit with seasonal differences in presence, waveform parameters and phase relationship of 24-h rhythm, of different genes. Particularly, mRNA expression of all candidate genes (except hypothalamic vip, pineal gls and retinal th) was arrhythmic in late photostimulated state. These results underscore that circadian rhythm of peptide, amino acid and amine neurotransmitter biosynthesis in CPS plays a critical role in the photoperiodic regulation of seasonal states in birds.


Asunto(s)
Proteínas Aviares/metabolismo , Hipotálamo/metabolismo , Glándula Pineal/metabolismo , Retina/metabolismo , Estaciones del Año , Pájaros Cantores/metabolismo , Migración Animal/fisiología , Animales , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Fotoperiodo , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Factores de Tiempo
6.
J Exp Biol ; 220(Pt 22): 4162-4168, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916681

RESUMEN

We investigated whether circannual rhythms underlying annual testis maturation and moult cycles are independent of duration and frequency of the light period and circadian clock control in non-photoperiodic spotted munia. Birds were subjected to an aberrant light-dark (LD) cycle (3.5 h L:3.5 h D; T7, where T is the period length of the LD cycle) and continuous light (LL, 24 h L:0 h D), with controls on 12 h L:12 h D (T24, 24 h LD cycle). We measured the behavioural activity pattern of the birds and 24 h mRNA oscillations of circadian clock genes (bmal1, clock, per2, cry1, cry2) in the hypothalamus, the putative site of seasonal timing. Diurnal munia were rhythmic in behaviour with the period of the activity-rest cycle matched to T7 and T24, and became behaviourally arrhythmic with activity scattered throughout 24 h under LL. Similarly, exposure to 3.5 h L:3.5 h D and LL caused arrhythmicity in 24 h clock gene expression, suggesting disruption of internal circadian timing at the transcriptional level; a significant rhythm was found under 12 h L:12 h D. During an exposure of 80 weeks, munia showed two to three cycles of testis maturation and wing primaries moult under all photoperiods, although with a longer period under 12L:12D. Thus, the frequency of light period under 3.5 h L:3.5 h D or LL disrupted circadian clock gene cycles, but did not affect the generation of circannual testis and moult cycles. We conclude that the prevailing light environment and hypothalamic circadian gene cycles do not exert direct control on the timing of the annual reproductive cycle in spotted munia, suggesting independent generation of the circadian and circannual rhythms in seasonally breeding species.


Asunto(s)
Proteínas Aviares/genética , Proteínas CLOCK/genética , Ritmo Circadiano , Muda , Fotoperiodo , Pájaros Cantores/fisiología , Testículo/fisiología , Animales , Proteínas Aviares/metabolismo , Proteínas CLOCK/metabolismo , Pinzones/fisiología , Hipotálamo/metabolismo , Masculino , Periodicidad
7.
Mol Cell Endocrinol ; 439: 81-94, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27789391

RESUMEN

Hypothalamic expression of the thyroid hormone (TH) responsive gonadostimulatory (eya3, cga, tshß, dio2, dio3, gnrh, gnih) and neurosteroid pathway genes (androgen receptor [ar], aromatase [cyp19], estrogen receptor [er] α and ß) was examined in photosensitive redheaded buntings exposed to 2 (acute, experiment 1) or 12 (chronic, experiment 2) long days (16L:8D). Experiment 2 also included a photorefractory group. Acute long days caused a significant increase in eya3, cga, tshß, dio2 and gnrh and decrease in dio3 mRNA levels. eya3, cga and tshß expressions were unchanged after the chronic long days. We also found increased cyp19, erα and erß mRNA levels after acute, and increased cyp19 and decreased erß levels after the chronic long-day exposure. Photorefractory buntings showed expression patterns similar to that in the photosensitive state, except for high gnrh and gnih and low dio3 mRNA levels. Consistent with gene expression patterns, there were changes in fat deposition, body mass, testis size, and plasma levels of testosterone, tri-iodothyronine and thyroxine. These results show concurrent photostimulation of the TH-signalling and neurosteroid pathways, and extend the idea, based on differences in gene expression, that transitions in seasonal photoperiodic states are accomplished at the transcriptional levels in absolute photorefractory species.


Asunto(s)
Migración Animal/fisiología , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Fotoperiodo , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Animales , Gónadas/metabolismo , Hormonas/sangre , Modelos Biológicos , Transducción de Señal/genética , Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA