Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Chem Toxicol ; 150: 112075, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33617964

RESUMEN

Medicinal or herbal plants are widely used for their many favourable properties and are generally safe without any side effects. Saponins are sugar conjugated natural compounds which possess a multitude of biological activities such as medicinal properties, antimicrobial activity, antiviral activity, etc. Saponin production is a part of the normal growth and development process in a lot of plants and plant extracts such as liquorice and ginseng which are exploited as potential drug sources. Herbal compounds have shown a great potential against a wide variety of infectious agents, including viruses such as the SARS-CoV; these are all-natural products and do not show any adverse side effects. This article reviews the various aspects of saponin biosynthesis and extraction, the need for their integration into more mainstream medicinal therapies and how they could be potentially useful in treating viral diseases such as COVID-19, HIV, HSV, rotavirus etc. The literature presents a close review on the saponin efficacy in targeting mentioned viral diseases that occupy a high mortality rate worldwide. This manuscript indicates the role of saponins as a source of dynamic plant based anti-viral remedies and their various methods for extraction from different sources.


Asunto(s)
Antivirales/aislamiento & purificación , Saponinas/aislamiento & purificación , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Antivirales/farmacología , VIH/efectos de los fármacos , Estructura Molecular , Orthomyxoviridae/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Saponinas/biosíntesis , Saponinas/química , Saponinas/farmacología
2.
Poult Sci ; 99(10): 4776-4785, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32988512

RESUMEN

The chitooligosaccharide (COS) and chlorella polysaccharide (CPS) have been used as feed supplements in the poultry industry for improving growth performance and immunity. However, the benefits of these prebiotics on the gut health of chickens when used in early nutrition are unknown. This study evaluated the effects of in ovo feeding of COS and CPS on the cecal microbiome, metabolic pathways, and fermentation metabolites of chickens. A total of 240 fertile eggs were divided into 6 groups (n = 4; 10 eggs/replicate): 1) no-injection control, 2) normal saline control, 3) COS 5 mg, 4) COS 20 mg, 5) CPS 5 mg, and 6) CPS 20 mg injection. On day 12.5 of egg incubation, test substrate was injected into the amniotic sac of eggs in respective treatments. The hatched chicks were raised for 21 D under standard husbandry practices. On day 3 and 21, cecal digesta were collected to determine microbiota by shotgun metagenomic sequencing and short-chain fatty acids by gas chromatography. The cecal microbial composition was not different (P > 0.05) among the treatment groups on day 3 but was different (P < 0.05) on day 21. At the species level, the polysaccharide-utilizing bacteria including Lactobacillus johnsonii, Bacteroides coprocola, and Bacteroides salanitronis were higher in the COS group, whereas the relative abundance of some opportunistic pathogenic bacteria were lower than those in the CPS and control groups. At the functional level, the pathways of gluconeogenesis, L-isoleucine degradation, L-histidine biosynthesis, and fatty acid biosynthesis were enriched in the COS group. In addition, propionic acid content was higher (P < 0.05) in the COS group. A network based on the correlation between the COS and other factors was constructed to illuminate the potential action mechanism of the COS in chicken early nutrition. In conclusion, in ovo inoculation of COS 5 mg showed positive effects on the cecal microbiota, metabolic pathways, and propionic acid, thus can be used as in ovo feeding to modulate the gut health of chickens.


Asunto(s)
Ciego , Pollos , Quitina/análogos & derivados , Suplementos Dietéticos , Redes y Vías Metabólicas , Microbiota , Polisacáridos , Animales , Bacterias/efectos de los fármacos , Ciego/microbiología , Quitina/administración & dosificación , Quitina/farmacología , Quitosano , Chlorella/química , Fermentación/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Microbiota/efectos de los fármacos , Oligosacáridos , Óvulo , Extractos Vegetales/farmacología , Polisacáridos/farmacología
3.
Gut Microbes ; 12(1): 1785252, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663059

RESUMEN

The stable gut microbiome plays a key role in sustaining host health, while the instability of gut microbiome also has been found to be a risk factor of various metabolic diseases. At the ecological and evolutionary scales, the inevitable competition between the ingested probiotic and indigenous gut microbiome can lead to an increase in the instability. It remains largely unclear if and how exogenous prebiotic can improve the overall gut microbiome stability in probiotic consumption. In this study, we used Lactobacillus plantarum HNU082 (Lp082) as a model probiotic to examine the impact of the continuous or pulsed supplementation of galactooligosaccharide (GOS) on the gut microbiome stability in mice using shotgun metagenomic sequencing. Only continuous GOS supplement promoted the growth of probiotic and decreased its single-nucleotide polymorphisms (SNPs) mutation under competitive conditions. Besides, persistent GOS supplementation increased the overall stability, reshaped the probiotic competitive interactions with Bacteroides species in the indigenous microbiome, which was also evident by over-abundance of carbohydrate-active enzymes (CAZymes) accordingly. Also, we identified a total of 793 SNPs arisen in probiotic administration in the indigenous microbiome. Over 90% of them derived from Bacteroides species, which involved genes encoding transposase, CAZymes, and membrane proteins. However, neither GOS supplementation here de-escalated the overall adaptive mutations within the indigenous microbes during probiotic intake. Collectively, our study demonstrated the beneficial effect of continuous prebiotic supplementation on the ecological and genetic stability of gut microbiomes.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/farmacología , Probióticos/farmacología , Animales , Microbioma Gastrointestinal/genética , Glicósido Hidrolasas/genética , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Ratones , Mutación , Oligosacáridos/administración & dosificación , Oligosacáridos/metabolismo , Prebióticos/administración & dosificación , Probióticos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA