Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Chem Toxicol ; 45(5): 2352-2360, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34233566

RESUMEN

CYP2E1 plays a crucial role in the bio-activation of toxic substances leading to liver damage. In this context, CYP2E1 converts paracetamol (PCM) to N-acetyl-p-benzoquinone imine (NAPQI), which is prone to cause hepatotoxicity. Hence, we aimed to explore the protective effect of glabridin on widely used PCM-induced liver injury model in the present study and, after that, correlated with the role of CYP2E1 toward its efficacy. Glabridin was isolated from Glycyrrhiza glabra and characterized before the investigation in an in-vivo mice model of PCM-induced liver injury. Glabridin after oral treatment at 5-20 mg/kg showed a considerable improvement in serum biochemical parameters (ALT and AST) and oxidative stress markers (MDA, GSH, SOD, and catalase) in comparison to only PCM-treatment. Histopathological examination of the liver depicted that glabridin exhibited substantial protection from PCM-induced liver injury compared to the disease control group. Significant down-regulation of CYP2E1 protein and its mRNA expression levels were observed in the glabridin-treated groups compared to PCM-induced respective elevation of CYP2E1. Moreover, activation of NF-κB was significantly inhibited by glabridin. Therefore, glabridin has the potential to protect PCM-induced liver injury through CYP2E1 inhibition-mediated normalization of oxidative stress. Further research is warranted to establish glabridin as a phytotherapeutics for liver protection for which no effective and safe oral drug is available to date.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Isoflavonas , Hígado , Ratones , Estrés Oxidativo , Fenoles
2.
Environ Sci Pollut Res Int ; 28(12): 15123-15129, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33230789

RESUMEN

Cu(In,Ga)Se2 (CIGS) absorbers are prepared by direct current electrodeposition process followed by selenization of precursors. Selenization of electrodeposited layers is performed in a tubular furnace at 550 °C in elemental selenium atmosphere using Ar as carrier gas. The effect of evacuation of tube prior to the selenization on the formation of CIGS absorbers is studied. Characterization of CIGS absorbers reveals that the samples selenized without prior evacuation found to have excess MoSe2 formation at the CIGS/Mo interface leading to bulk cracks in underlying Mo back contact compared to their counterparts. Although the fabricated solar cells using the absorbers, prepared with and without evacuation, are observed to be photoactive, the cells from vacuum-based selenization showed improvement in performance compared to the cells from non-vacuum selenization. The process is further being improved to enhance the efficiency, which can pave way towards environmentally friendly low-cost solar cells.


Asunto(s)
Selenio
3.
BMC Plant Biol ; 19(1): 301, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291885

RESUMEN

BACKGROUND: Nothapodytes nimmoniana, a plant of pivotal medicinal significance is a source of potent anticancer monoterpene indole alkaloid (MIA) camptothecin (CPT). This compound owes its potency due to topoisomerase-I inhibitory activity. However, biosynthetic and regulatory aspects of CPT biosynthesis so far remain elusive. Production of CPT is also constrained due to unavailability of suitable in vitro experimental system. Contextually, there are two routes for the biosynthesis of MIAs: the mevalonate (MVA) pathway operating in cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. Determination of relative precursor flux through either of these pathways may provide a new vista for manipulating the enhanced CPT production. RESULTS: In present study, specific enzyme inhibitors of MVA (lovastatin) and MEP pathways (fosmidomycin) were used to perturb the metabolic flux in N. nimmoniana. Interaction of both these pathways was investigated at transcriptional level by using qRT-PCR and at metabolite level by evaluating secologanin, tryptamine and CPT contents. In fosmidomycin treated plants, highly significant reduction was observed in both secologanin and CPT accumulation in the range 40-57% and 64-71.5% respectively, while 4.61-7.69% increase was observed in tryptamine content as compared to control. Lovastatin treatment showed reduction in CPT (7-11%) and secologanin (7.5%) accumulation while tryptamine registered slight increase (3.84%) in comparison to control. These inhibitor mediated changes were reflected at transcriptional level via altering expression levels of deoxy-xylulose-5-phosphate reductoisomerase (DXR) and hydroxymethylglutaryl-CoA reductase (HMG). Further, mRNA expression of four more genes downstream to DXR and HMG of MEP and MVA pathways respectively were also investigated. Expression analysis also included secologanin synthase (SLS) and strictosidine synthase (STR) of seco-iridoid pathway. Present investigation also entailed development of an efficient in vitro multiplication system as a precursor to pathway flux studies. Further, a robust Agrobacterium-mediated transformed hairy root protocol was also developed for its amenability for up-scaling as a future prospect. CONCLUSIONS: Metabolic and transcriptional changes reveal differential efficacy of cytosolic and plastidial inhibitors in context to pathway flux perturbations on seco-iridoid end-product camptothecin. MEP pathway plausibly is the major precursor contributor towards CPT production. These empirical findings allude towards developing suitable biotechnological interventions for enhanced CPT production.


Asunto(s)
Antineoplásicos Fitogénicos/biosíntesis , Camptotecina/biosíntesis , Magnoliopsida/genética , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , Plantas Medicinales
4.
Plant Mol Biol ; 100(4-5): 543-560, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31090025

RESUMEN

KEY MESSAGE: Functional characterization of WsMYC2 via artificial microRNA mediated silencing and transient over-expression displayed significant regulatory role vis-à-vis withanolides and stigmasterol biosyntheses in Withania somnifera. Further, metabolic intensification corroborated well with higher expression levels of putative pathway genes. Additionally, copious expression of WsMYC2 in response to exogenous elicitors resulted in enhanced withanolides production. Withania somnifera, a high value multipurpose medicinal plant, is a rich reservoir of structurally diverse and biologically active triterpenoids known as withanolides. W. somnifera has been extensively pursued vis-à-vis pharmacological and chemical studies. Nonetheless, there exists fragmentary knowledge regarding the metabolic pathway and the regulatory aspects of withanolides biosynthesis. Against this backdrop, a jasmonate-responsive MYC2 transcription factor was identified and functionally characterized from W. somnifera. In planta transient over-expression of WsMYC2 showed significant enhancement of mRNA transcript levels which corroborated well with the enhanced content of withanolides and stigmasterol. Further, a comparative analysis of expression levels of some of the genes of triterpenoid pathway viz. WsCAS, WsCYP85A, WsCYP90B and WsCYP710A in corroboration with the over-expression and silencing of WsMYC2 suggested its positive influence on their regulation. These corroboratory approaches suggest that WsMYC2 has cascading effect on over-expression of multiple pathway genes leading to the increased triterpenoid biosynthesis in infiltered plants. Further, the functional validation of WsMYC2 was carried out by artificial micro-RNA mediated silencing. It resulted in significant reduction of withanolides and stigmasterol levels, indicative of crucial role of WsMYC2 in the regulation of their biosyntheses. Taken together, these non-complementary approaches provided unambiguous understanding of the regulatory role of WsMYC2 in context to withanolides and stigmasterol biosyntheses. Furthermore, the upstream promoter of WsMYC2 presented several cis-regulatory elements primarily related to phytohormone responsiveness. WsMYC2 displayed inducible nature in response to MeJA. It had substantial influence on the higher expression of WsMYC2 which was in consonance with enhanced accumulation of withanolides.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Fitosteroles/biosíntesis , Triterpenos/metabolismo , Withania/metabolismo , Witanólidos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Clonación Molecular , Simulación por Computador , Ciclopentanos/metabolismo , Genes de Plantas , Redes y Vías Metabólicas , Oxilipinas/metabolismo , Filogenia , Fitosteroles/genética , Transducción de Señal
5.
Plant Cell Rep ; 29(7): 747-55, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20437049

RESUMEN

Isoflavones are known to possess medicinal properties and implicated in plant-pathogen interaction. We have for the first time isolated and functionally characterized an isoflavones synthase (IFS) gene from a traditionally acclaimed medicinal plant Psoralea corylifolia abundantly growing in tropical and subtropical regions. The IFS catalyzes the exclusive reaction of phenylpropanoid pathway in leguminous plants to produce isoflavones. The full-length cDNA (PcIFS) of the gene comprised 1,563 bp and putatively encodes a polypeptide of 520 amino acid residues. The gene is expressed ubiquitously although at varying levels in different parts of the plant. The expression analysis suggests that the gene is responsive to methyl jasmonate, salicylic acid and wounding. Overexpression of PcIFS in non-leguminous tobacco plant led to the accumulation of isoflavones in petal tissue, suggesting it a functional gene from P. corylifolia involved in isoflavones biosynthesis.


Asunto(s)
Isoflavonas/biosíntesis , Oxigenasas/química , Oxigenasas/genética , Plantas Medicinales/enzimología , Plantas Medicinales/genética , Psoralea/enzimología , Psoralea/genética , Secuencia de Aminoácidos , Secuencia de Bases , Flores/enzimología , Flores/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Datos de Secuencia Molecular , Oxigenasas/aislamiento & purificación
6.
Ecotoxicol Environ Saf ; 72(4): 1102-10, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19013643

RESUMEN

The physiological, biochemical, and proteomic changes in germinating rice seedlings were investigated under arsenic stress. A marked decrease in germination percentage, shoot, and root elongation as well as plant biomass was observed with arsenic treatments, as compared to control, whereas accumulation of arsenic and malondialdehyde (MDA) in seedlings were increased significantly with increasing arsenic concentration (both AsIII and AsV). The up-regulation of some antioxidant enzyme activities and the isozymes of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), peroxidase (POD, EC 1.11.1.7), and glutathione reductase (GR, 1.6.4.2) substantiated that arsenic accumulation generated oxidative stress, which was more pronounced in As(III) treatment. We also studied the protective effect of reduced glutathione (GSH) and cysteine (Cys) to As(III)/As(V) stressed seedlings. Both GSH and Cys imparted enhanced tolerance to seedlings against arsenic stress. Seedlings growth improved while level of MDA declined significantly when GSH and Cys were supplemented to As(III)/As(V) treatments suggesting GSH and Cys-mediated protection against oxidative stress. The arsenic content was highest in roots of seedlings grown in As(III) in the presence of GSH/Cys. However, in case of As(V) plus GSH or Cys, the arsenic content in seedlings was highest in shoots. The results are suggestive of differential metabolism of As(III) and As(V) in rice.


Asunto(s)
Antioxidantes/metabolismo , Arsénico/toxicidad , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Estrés Oxidativo/efectos de los fármacos , Venenos/toxicidad , Arsénico/análisis , Cisteína/metabolismo , Germinación/efectos de los fármacos , Glutatión/metabolismo , Isoenzimas/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oryza/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Venenos/análisis , Plantones/efectos de los fármacos , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA