Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1864(10): 129676, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32649980

RESUMEN

BACKGROUND: Oxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact. Considering the role of SAC in regulating redox balance, we hypothesize that SAC may have a protective role in oxidative-stress induced atrophy. METHODS: C2C12 myotubes were treated with H2O2 (100 µM) in the presence or absence of SAC (200 µM) to study morphology, redox status, inflammatory cytokines and proteolytic systems using fluorescence microscopy, biochemical analysis, real-time PCR and immunoblotting approaches. The anti-atrophic potential of SAC was confirmed in denervation-induced atrophy model. RESULTS: SAC pre-incubation (4 h) could protect the myotube morphology (i.e. length/diameter/fusion index) from atrophic effects of H2O2. Lower levels of ROS, lipid peroxidation, oxidized glutathione and altered antioxidant enzymes were observed in H2O2-exposed cells upon pre-treatment with SAC. SAC supplementation also suppressed the rise in cytokines levels (TWEAK/IL6/myostatin) caused by H2O2. SAC treatment also moderated the degradation of muscle-specific proteins (MHCf) in the H2O2-treated myotubes supported by lower induction of diverse proteolytic systems (i.e. cathepsin, calpain, ubiquitin-proteasome E3-ligases, caspase-3, autophagy). Denervation-induced atrophy in mice illustrates that SAC administration alleviates the negative effects (i.e. mass loss, decreased cross-sectional area, up-regulation of proteolytic systems, and degradation of total/specific protein) of denervation on muscles. CONCLUSIONS: SAC exerts significant anti-atrophic effects to protect myotubes from H2O2-induced protein loss and myofibers from denervation-induced muscle loss, due to the prevention of elevated proteolytic systems and inflammatory/oxidative molecules. GENERAL SIGNIFICANCE: The results signify the potential of SAC against muscle atrophy.


Asunto(s)
Cisteína/análogos & derivados , Atrofia Muscular/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Línea Celular , Cisteína/farmacología , Cisteína/uso terapéutico , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología
2.
J Ethnopharmacol ; 254: 112720, 2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32114167

RESUMEN

ETHANOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (TC) is widely being used as immunomodulatory and re-juvenile drug and well described in Indian Ayurveda system of medicine. Rejuvenation also means the fine tuning of the skeletal muscles. Skeletal muscle related disorder, i.e. atrophy is major problem which arise due to cachexia, sarcopenia and immobilization. However, despite of the great efforts, there is scarcity of FDA approved drugs in the market to treat skeletal muscle atrophy. AIM OF THE STUDY: The current study was aimed to explore the in-vitro and in-vivo efficacy and mechanism of TC in myogenic differentiation and skeletal muscle atrophy to establish the possibility of its usage to counteract skeletal muscle atrophy. MATERIALS AND METHODS: C2C12 cell lines were used to determine myogenic potential and anti-atrophic effects of T. cordifolia water extract (TCE). Its in-vitro efficacy was re-validated in vivo by supplementation of TCE at a dose of 200 mg/kg/p.o. for 30 days in denervated mice model of skeletal muscle atrophy. Effects of TCE administration on levels of oxidative stress, inflammatory markers and proteolysis were determined. RESULTS: TCE supplementation displayed increased lymphocyte proliferation and induced myogenic differentiation of C2C12 myoblasts by significantly increasing myocytes length and thickness, in comparison to control (p < 0.05). TCE supplementation decreased oxidative stress and inflammatory response by significantly modulating activities of catalase, glutathione peroxidase, lipid peroxidase, superoxide dismutase and ß-glucuronidase (p < 0.05). It increased MF-20c expression and ameliorated degradation of muscle protein by down-regulating MuRF-1 and calpain activity. CONCLUSION: TCE supplementation promotes myogenic differentiation in C2C12 cell lines and prevents denervation induced skeletal muscle atrophy by antagonizing the proteolytic systems (calpain and UPS) and maintaining the oxidative defense mechanism of the cell. Hence, TCE can be used as a protective agent against muscle atrophy.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Atrofia Muscular/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Tinospora , Animales , Línea Celular , Desnervación , Linfocitos/efectos de los fármacos , Masculino , Ratones , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta , Nervio Ciático/cirugía
3.
Biochim Biophys Acta Gen Subj ; 1862(4): 895-906, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29288771

RESUMEN

BACKGROUND: Elevated levels of inflammatory molecules are key players in muscle wasting/atrophy leading to human morbidity. TNFα is a well-known pro-inflammatory cytokine implicated in the pathogenesis of muscle wasting under diverse clinical settings. S-allyl cysteine (SAC), an active component of garlic (Allium sativum), has established anti-oxidant and anti-inflammatory effects in various cell types. However, the impact of SAC on skeletal muscle pathology remains unexplored. Owing to the known anti-inflammatory properties of SAC, we investigated whether pre-treatment with SAC has a protective role in TNFα-induced atrophy in cultured myotubes. METHODS AND RESULTS: C2C12 myotubes were treated with TNFα (100ng/ml) in the presence or absence of SAC (0.01mM). TNFα treatment induced atrophy in myotubes by up-regulating various proteolytic systems i.e. cathepsin L, calpain, ubiquitin-proteasome E3-ligases (MuRF1/atrogin1), caspase 3 and autophagy (Beclin1/LC3B). TNFα also induced the activation of NFκB by stimulating the degradation of IκBα (inhibitor of NFκB), in myotubes. The alterations in proteolytic systems likely contribute to the degradation of muscle-specific proteins and reduce the myotube length, diameter and fusion index. The SAC supplementation significantly impedes TNFα-induced protein loss and protects myotube morphology by suppressing protein catabolic systems and endogenous level of inflammatory molecules namely TNFα, IL-6, IL-1ß, TNF-like weak inducer of apoptosis (TWEAK), fibroblast growth factor-inducible 14 (Fn14) and Nox. CONCLUSION AND GENERAL SIGNIFICANCE: Our findings reveal anti-atrophic role for SAC, as it prevents alterations in protein metabolism and protects myotubes by regulating the level of inflammatory molecules and multiple proteolytic systems responsible for muscle atrophy.


Asunto(s)
Cisteína/análogos & derivados , Mediadores de Inflamación/metabolismo , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/prevención & control , Factor de Necrosis Tumoral alfa/farmacología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular , Cisteína/farmacología , Citocinas/genética , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Proteolisis/efectos de los fármacos , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Alcohol ; 52: 71-78, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27139240

RESUMEN

Fatty acid amides (FAAs) in alcoholism lead to liver diseases. These amides have been reported in plasma and in other organs of the body, while their detection or presence in the urine is still unknown. Therefore, the focus of the current study was to detect and analyze FAAs qualitatively in urine samples of alcoholics. Furthermore, the effects of Tinospora cordifolia (hepatoprotective medicinal plant) intervention on FAA levels in moderate alcoholics were also analyzed. In the study, asymptomatic chronic alcoholics (n = 22) without chronic liver disease and nonalcoholic healthy volunteers (n = 24) with a mean age of 39 ± 2.0 years were selected. The first-pass urine and fasting blood samples were collected in the morning on day 0 and day 14 after T. cordifolia water extract (TCE) treatment and analyzed using automated biochemistry analyzer and HPLC-QTOF-MS. Results indicated the increased levels of serum triglycerides, cholesterol, and liver function enzymes in alcoholic subjects, which were significantly down-regulated by TCE intervention. Multivariate discrimination analysis of QTOF-MS data showed increased urinary levels of oleoamide (2.55-fold), palmitamide (5.6-fold), and erucamide (1.6-fold) in alcoholics as compared to control subjects. Levels of oleamide (1.8-fold), palmitamide (1.7-fold), and linoleamide (1.5-fold) were found to be increased in plasma. Treatment with TCE in alcoholics (3.0 g lyophilized water extract/day) significantly decreased the plasma and urinary levels of all FAAs except linoleamide. The HPLC-QTOF-MS approach for FAAs analysis in both urinary and plasma samples of alcoholics worked very well. Moreover, findings (i.e., increased levels of FAAs in urine and in plasma) further support other findings that these amides play a very important role in alcoholism. Further, like our previous findings, TCE proved its hepatoprotective effect against alcoholism not only by lowering the levels of these detected FAAs, but also by decreasing the level of liver-specific enzymes and lipids.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/orina , Amidohidrolasas/orina , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem/métodos , Tinospora , Adulto , Alcohólicos , Amidohidrolasas/antagonistas & inhibidores , Biomarcadores/orina , Cromatografía Líquida de Alta Presión/métodos , Humanos , Masculino , Extractos Vegetales/farmacología
5.
Steroids ; 114: 68-77, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27016128

RESUMEN

Chronic and heavy alcohol consumption disrupts lipid metabolism and hormonal balance including testosterone levels. However, studies doubt the relationship between moderate alcohol intake and sex hormone levels. Therefore, the aim of the present investigation was to establish the direct impact of chronic and moderate alcohol intake on cholesterol homeostasis and steroid hormone synthesis. Asymptomatic chronic and moderate alcoholics (n=12) without chronic liver disease and healthy volunteers (n=14) were selected for the study. Furthermore, effects of standardized water extract of Tinospora cordifolia (Willd) Mier. (Menispermaceae) (TCJ), a well reported anti-alcoholic herbal drug, on urinary steroids was studied. This study included four groups, i.e. a) healthy; b) healthy+TCJ; c) alcoholic; d) alcoholic+TCJ. The blood and urine samples from each group were collected on day 0 and 14 of the post-treatment with TCJ and analyzed. Alcoholic blood samples showed the significantly higher values of traditional biomarkers γ-GT and MCV along with cholesterol, LDL, TGL and urinary methylglucuronide compared to healthy. Qualitative analysis of steroids showed that moderate alcohol intake in a chronic manner increased the cholesterol synthesis and directed its flow toward C-21 steroids; shown by increased levels of corticosterone (2.456 fold) and cortisol (3.7 fold). Moreover, alcohol intake also increased the synthesis of estradiol and clearance rate of other steroids through the formation of glucuronides. Therefore, it decreased the synthesis and increased the clearance rate of testosterone (T) and androstenedione (A). Quantitative analysis confirmed decreased T/A ratio from 2.31 to 1.59 in plasma and 2.47 to 1.51 in urine samples of alcoholics. TCJ intervention normalized the levels of steroids and significantly improved the T:A ratio to 2.0 and 2.12 in plasma and urine. The study revealed that TCJ modulated lipid metabolism by inhibiting cholesterol and glucuronides synthesis.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Esteroides/sangre , Esteroides/orina , Tinospora/química , Adulto , Alcoholismo/sangre , Alcoholismo/tratamiento farmacológico , Alcoholismo/orina , Androstenodiona/sangre , Androstenodiona/orina , Cromatografía Liquida , Estradiol/sangre , Estradiol/orina , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas , Extractos Vegetales/uso terapéutico , Testosterona/sangre , Testosterona/orina
6.
Alcohol Alcohol ; 50(3): 271-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25754126

RESUMEN

AIMS: We have studied urine metabolic signature of chronic alcoholism (CA) before and after treatment with an Ayurvedic drug Tinospora cordifolia aqueous extract (TCE). METHODS: Urinary metabolites of chronic alcoholics and apparently healthy subjects were profiled using HPLC-Q-TOF-MS. Discrimination models from the initial data sets were able to correctly assign the unknown samples to the CA, treated or healthy groups in validation sets with r(2) > 0.98. RESULTS: Metabolic signature in CA patients include changed tryptophan, fatty acids and pyrimidines metabolism. Several novel biomarkers of alcoholism were observed in urine for the first time which includes, 5-hydroxyindole, phenylacetic acid, picolinic acid, quinaldic acid, histidine, cystathionine, riboflavin, tetrahydrobiopterin and chenodeoxyglycocholic acid, in addition to previously reported biomarkers. Treatment of CA with TCE reverted the levels of most of the biomarkers except tetrahydrobiopterin levels. CONCLUSIONS: These results suggested that the measurement of these urine metabolites could be used as a non-invasive diagnostic method for the detection of CA. As TCE treatment significantly reversed the affected pathways without any side effect. Overall, the present data depicts that TCE may be used either alone or adjunct in reducing alcohol-induced disorders.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Tallos de la Planta , Tinospora , Adulto , Alanina Transaminasa/sangre , Alcoholismo/sangre , Alcoholismo/orina , Aspartato Aminotransferasas/sangre , Biomarcadores/orina , Glucemia , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Cromatografía Líquida de Alta Presión , Índices de Eritrocitos , Humanos , Masculino , Espectrometría de Masas , Metabolómica , Resultado del Tratamiento , Triglicéridos/sangre , Ácido Úrico/sangre , gamma-Glutamiltransferasa/sangre
7.
ISRN Pharm ; 2013: 293935, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23986876

RESUMEN

High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer was used for separation and identification of phenolic and other compounds in the water extracts of Saraca asoca (Roxb.), De. Wilde. The aim of the study was to identify and evaluate the distribution of phenolic compounds in the different parts of the plant. The identity of compounds was established through the comparison with standards and characteristic base peaks as well as other daughter ions. In crude extracts, 34 catechin derivatives, 34 flavonoids, and 17 other compounds were identified. Interestingly, further analysis of compounds showed plant part specific unique pattern of metabolites; that is, regenerated bark is observed to be the best source for catechin/catechin derivative while flowers were found to be the source for wide variety of flavonoids. Moreover, these plant part specific compounds can be used as biomarkers for the identification of plant material or herbal drugs. Overall, the present study provides for the first time a comprehensive analysis of the phenolic components of this herb which may be helpful not only to understand their usage but also to contribute to quality control as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA