Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurosci Lett ; 656: 103-107, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28619261

RESUMEN

Sequestosome 1 (SQSTM1) also known as ubiquitin-binding protein p62 (p62) is a cargo protein involved in the degradation of misfolded proteins via selective autophagy. Disruption of autophagy and resulting accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress. ER stress is implicated in several neurodegenerative diseases and obesity. As knockout of p62 (p62KO) reportedly induces obesity in mice, we examined how p62 contributes to ER stress and the ensuing unfolded protein response (UPR) in hypothalamus using mouse organotypic cultures in the present study. Cultures from p62KO mice showed significantly reduced formation of LC3-GFP puncta, an index of autophagosome formation, in response to the chemical ER stressor thapsigargin compared to wild-type (WT) cultures. Hypothalamic cultures from p62KO mice exhibited higher basal expression of the UPR/ER stress markers CHOP mRNA and ATF4 mRNA than WT cultures. Thapsigargin enhanced CHOP, ATF4, and BiP mRNA as well as p-eIF2α protein expression in both WT and p62KO cultures, but all peak values were greater in p62KO cultures. A proteasome inhibitor increased p62 expression in WT cultures and upregulated the UPR/ER stress markers CHOP mRNA and ATF4 mRNA in both genotypes, but to a greater extent in p62KO cultures. Therefore, p62 deficiency disturbed autophagosome formation and enhanced both basal and chemically induced ER stress, suggesting that p62 serves to prevent ER stress in mouse hypothalamus by maintaining protein folding capacity.


Asunto(s)
Estrés del Retículo Endoplásmico , Hipotálamo/metabolismo , Proteína Sequestosoma-1/metabolismo , Animales , Autofagosomas/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Pliegue de Proteína , Proteína Sequestosoma-1/genética , Técnicas de Cultivo de Tejidos , Respuesta de Proteína Desplegada
2.
Biochem Biophys Res Commun ; 488(1): 116-121, 2017 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-28479249

RESUMEN

Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor ß (IRß) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRß and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions.


Asunto(s)
Proteína Relacionada con Agouti/genética , Dieta Alta en Grasa , Hipotálamo/metabolismo , Resistencia a la Insulina/genética , Insulina/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , ARN Mensajero/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Perfilación de la Expresión Génica , Insulina/sangre , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
3.
EBioMedicine ; 16: 172-183, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28094236

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.


Asunto(s)
Hipotálamo/metabolismo , Inflamación/metabolismo , Janus Quinasa 2/metabolismo , Microglía/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/deficiencia , Factor de Transcripción STAT3/metabolismo , Animales , Western Blotting , Dieta Alta en Grasa/efectos adversos , Activación Enzimática , Femenino , Expresión Génica , Hipotálamo/patología , Inflamación/etiología , Inflamación/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Ratones Noqueados , Microscopía Confocal , Técnicas de Cultivo de Órganos , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Biol Chem ; 280(15): 14684-90, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15701625

RESUMEN

The insect brain regulates the activity of the prothoracic glands to secrete ecdysteroids, which affect growth, molting, and metamorphosis. Here we report the identification of a novel prothoracicostatic factor and its receptor in the silkworm Bombyx mori. The prothoracicostatic factor purified from pupal brains of B. mori is a decapeptide with the conserved structure of an insect myosuppressin and thus named Bommo-myosuppressin. Bommo-myosuppressin dose dependently suppressed the cAMP level and inhibited ecdysteroidogenesis in the larval prothoracic glands at much lower concentrations than the prothoracicostatic peptide, the other prothoracicostatic factor reported previously. In vitro analyses using a prothoracic gland incubation method revealed that Bommo-myosuppressin and prothoracicostatic peptide regulate the prothoracic gland activity via different receptors. In situ hybridization and immunohistochemistry revealed the existence of Bommo-myosuppressin in the brain neurosecretory cells projecting to neurohemal organs in which it is stored. We also identified and functionally characterized a specific receptor for Bommo-myosuppressin and showed its high expression in the prothoracic glands. All these results suggest that Bommo-myosuppressin functions as a prothoracicostatic hormone and plays an important role in controlling insect development.


Asunto(s)
Hormonas de Insectos/biosíntesis , Hormonas de Insectos/química , Neuropéptidos/química , Neuropéptidos/fisiología , Secuencia de Aminoácidos , Animales , Northern Blotting , Bombyx , Encéfalo/metabolismo , Calcio/metabolismo , Línea Celular , Cromatografía Líquida de Alta Presión , AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Bases de Datos como Asunto , Ecdisona/química , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Ligandos , Espectrometría de Masas , Metamorfosis Biológica , Datos de Secuencia Molecular , Péptidos/química , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría , Rayos Ultravioleta
5.
Nat Med ; 9(12): 1477-83, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14595408

RESUMEN

We recently reported that mice deficient in the programmed cell death-1 (PD-1) immunoinhibitory coreceptor develop autoimmune dilated cardiomyopathy (DCM), with production of high-titer autoantibodies against a heart-specific, 30-kDa protein. In this study, we purified the 30-kDa protein from heart extract and identified it as cardiac troponin I (cTnI), encoded by a gene in which mutations can cause familial hypertrophic cardiomyopathy (HCM). Administration of monoclonal antibodies to cTnI induced dilatation and dysfunction of hearts in wild-type mice. Monoclonal antibodies to cTnI stained the surface of cardiomyocytes and augmented the voltage-dependent L-type Ca2+ current of normal cardiomyocytes. These findings suggest that antibodies to cTnI induce heart dysfunction and dilatation by chronic stimulation of Ca2+ influx in cardiomyocytes.


Asunto(s)
Antígenos de Superficie/inmunología , Autoanticuerpos/metabolismo , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/inmunología , Troponina I/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígenos CD , Antígenos de Superficie/genética , Proteínas Reguladoras de la Apoptosis , Secuencia de Bases , Señalización del Calcio , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , ADN Complementario/genética , Humanos , Ratones , Ratones Endogámicos A , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Receptor de Muerte Celular Programada 1 , Ratas , Ratas Wistar
6.
J Biol Chem ; 278(37): 35491-500, 2003 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12832409

RESUMEN

Recent evidence suggests that adult neural stem/progenitor cells (ANSCs) secrete autocrine/paracrine factors and that these intrinsic factors are involved in the maintenance of adult neurogenesis. We identified a novel secretory molecule, stem cell-derived neural stem/progenitor cell supporting factor (SDNSF), from adult hippocampal neural stem/progenitor cells by using the signal sequence trap method. The expression of SDNSF in adult central nervous system was localized to hippocampus including dentate gyrus, where the neurogenesis persists throughout life. In induced neurogenesis status seen in ischemically treated hippocampus, the expression of SDNSF was up-regulated. As functional aspects, SDNSF protein provided a dose-dependent survival effect for ANSC following basic fibroblast growth factor 2 (FGF-2) withdrawal. ANSCs treated by SDNSF also retain self-renewal potential and multipotency in the absence of FGF-2. However, SDNSF did not have mitogenic activity, nor was it a cofactor that promoted the mitogenic effects of FGF-2. These data suggested an important role of SDNSF as an autocrine/paracrine factor in maintaining stem cell potential and lifelong neurogenesis in adult central nervous system.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas Portadoras/fisiología , Factor de Células Madre/fisiología , Células Madre/fisiología , Proteínas de Transporte Vesicular/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Isquemia Encefálica/fisiopatología , Células COS , Proteínas de Unión al Calcio/genética , Proteínas Portadoras/genética , Línea Celular , Chlorocebus aethiops , Clonación Molecular , Cartilla de ADN , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Ratas , Ratas Endogámicas F344 , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor de Células Madre/genética , Células Madre/citología , Transfección , Proteínas de Transporte Vesicular/genética
7.
Eur J Neurosci ; 17(8): 1571-80, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12752375

RESUMEN

Phospholipase C is a key enzyme of intracellular signal transduction in the central nervous system. We and others recently discovered a novel class of phospholipase C, phospholipase Cepsilon, which is regulated by Ras and Rap small GTPases. As a first step toward analysis of its function, we have examined the spatial and temporal expression patterns of phospholipase Cepsilon during mouse development by in situ hybridization and immunohistochemistry. Around embryonic day 10.5, abundant expression of phospholipase Cepsilon is observed specifically in the outermost layer of the neural tube. On embryonic day 12 and later, it is observed mainly in the marginal zone of developing brain and spinal cord as well as in other regions undergoing neuronal differentiation, such as the retina and olfactory epithelium. The phospholipase Cepsilon-expressing cells almost invariably express microtubule-associated protein 2, but hardly express nestin or glial fibrillary acidic protein, indicating that the expression of phospholipase Cepsilon is induced specifically in cells committed to the neuronal lineage. The expression of phospholipase Cepsilon persists in the terminally differentiated neurons and exhibits no regional specificity. Further, an in vitro culture system of neuroepithelial stem cells is employed to show that abundant expression of phospholipase Cepsilon occurs in parallel with the loss of nestin expression as well as with the induction of microtubule-associated protein 2 expression and neuronal morphology. Also, glial fibrillary acidic protein-positive glial lineage cells do not exhibit the high phospholipase Cepsilon expression. These results suggest that the induction of phospholipase Cepsilon expression may be a specific event associated with the commitment of the neural precursor cells to the neuronal lineage.


Asunto(s)
Encéfalo/embriología , Diferenciación Celular , Neuronas/citología , Fosfolipasas de Tipo C/biosíntesis , Animales , Northern Blotting , Encéfalo/citología , Encéfalo/enzimología , Linaje de la Célula , Células Cultivadas , ADN Complementario/análisis , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos ICR , Neuroglía/citología , Neuroglía/enzimología , Neuronas/enzimología , Fosfoinositido Fosfolipasa C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia , Células Madre/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA