Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cancer ; 14(14): 2644-2654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779870

RESUMEN

Background: Trastuzumab deruxtecan is classified as an anticancer agent that poses a moderate emetic risk in the international guidelines for antiemetic therapy. The guidelines recommend emesis prophylaxis using a two-drug combination therapy comprising a 5-hydroxytryptamine-3 receptor antagonist (5-HT3RA) and dexamethasone (DEX). However, the high incidence of nausea and vomiting associated with trastuzumab deruxtecan is problematic. The National Comprehensive Cancer Network guideline version 1.2023 classified trastuzumab deruxtecan as having a high risk of emesis and changed its recommendation to a triplet regimen including a neurokinin-1 receptor antagonist (NK1RA). However, the emetogenic potential of trastuzumab-deruxtecan and the optimal antiemetic prophylaxis are controversial. Hence, this exploratory phase 2 study aimed to assess the efficacy and safety of treatment comprising 5-HT3RA and DEX with or without a NK1RA in preventing trastuzumab deruxtecan-induced nausea and vomiting. Methods: We conducted an open-label and randomized exploratory phase 2 study at 14 centers in Japan. Patients with breast cancer who were scheduled to receive trastuzumab deruxtecan were enrolled in this study. The patients were randomly assigned to receive granisetron and DEX (arm GD) or granisetron, DEX, and aprepitant (fosaprepitant; arm GDA). The primary endpoint was complete response (CR; no emesis or no rescue therapy) during the overall phase (120 h after the start of trastuzumab deruxtecan). Results: Between September 2020 and March 2023, 40 patients were randomly assigned to the GD (n = 19) or GDA (n = 21) arm. In the GDA arm, one patient who did not complete the use of the rescue medication listed in the diary was excluded from the efficacy analysis, which included the use of rescue medication. The CR rates during the overall phase were 36.8% and 70.0% in the GD and GDA arms, respectively (odds ratio 0.1334; 95% confidence interval [CI]: 0.0232-0.7672; P = 0.0190), with a difference of 33.2%. No grade 3 or 4 toxicity related to antiemetic therapy was observed. Conclusions: Patients receiving trastuzumab deruxtecan require triple therapy, including mandatory NK1RA administration.

2.
Nagoya J Med Sci ; 82(3): 457-467, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33132430

RESUMEN

Neoadjuvant chemotherapy (NAC) using the combination of anthracycline and taxanes is the standard regimen for patients with primary breast cancer. Among the taxanes, conventional paclitaxel (PTX) and docetaxel have usually been adopted in the neoadjuvant or adjuvant setting. Nanoparticle albumin-bound paclitaxel (nab-PTX) is a solvent-free formulation that can be delivered to cancer cells at higher doses than conventional PTX. This study is a retrospective observational study in a single institution. We evaluated the efficacy and safety of nab-PTX followed by 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) in the neoadjuvant setting. In this study, 50 patients with primary breast cancer received nab-PTX (q3w, 260 mg/m2 ± trastuzumab 6 mg/kg) followed by FEC (q3w, 5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2, and cyclophosphamide 500 mg/m2) prior to surgery. The efficacy was evaluated using the clinical response rate (CRR), pathological complete response (pCR) rate, and Ki67 labeling index. Safety was evaluated using the frequency of treatment-related adverse events and relative dose intensity (RDI). All patients received at least one course of chemotherapy. The CRR and pCR rate were 88.0% and 40.0%, respectively. The mean Ki67 labeling index was significantly decreased from 47.7% to 24.6% after NAC. The safety profiles were comparable with previously reported regimens, and high RDIs were obtained (97.2% for nab-PTX and 95.5% for FEC). This study illustrated the efficacy and tolerability of a neoadjuvant regimen of nab-PTX followed by FEC.


Asunto(s)
Paclitaxel Unido a Albúmina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Epirrubicina/uso terapéutico , Fluorouracilo/uso terapéutico , Trastuzumab/uso terapéutico , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Paclitaxel/uso terapéutico , Proyectos Piloto , Estudios Retrospectivos
3.
Eur J Endocrinol ; 150(3): 371-80, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15012624

RESUMEN

OBJECTIVE: ZAKI-4 was identified as a thyroid hormone-responsive gene in cultured human fibroblasts. A single ZAKI-4 gene encodes two isoforms, ZAKI-4 alpha and beta, both inhibiting calcineurin activity. ZAKI-4 alpha and beta differ at their N termini, and show distinct distribution profiles in human tissues. The aim of this study was to elucidate the organization of the mouse ZAKI-4 gene and to determine the effect of thyroid hormone on the expression of ZAKI-4 isoforms in vivo. DESIGN: We cloned mouse homologues of human ZAKI-4 alpha and beta cDNA. Fluorescence in situ hybridization and bioinformatics analysis were employed to determine the gene organization. The effect of thyroid hormone on the expression of ZAKI-4 isoforms in mouse brain and heart was also studied. METHODS: Total RNA extracted from mouse cerebellum was used to clone ZAKI-4 alpha and beta cDNAs by RT-PCR followed by rapid amplification of cDNA ends. Mice were rendered hypothyroid by feeding a low iodine diet supplemented with propylthiouracil for 2 weeks. In one group (hyperthyroid) L-T(3) was injected i.p. for the last 4 days whereas another group (hypothyroid) received vehicle only. Non-treated mice were controls. RESULTS AND CONCLUSION: Mouse ZAKI-4 alpha and beta cDNAs were highly homologous to the human isoforms. The gene was mapped on chromosome 17qC, syntenic to human chromosome 6 where the human ZAKI-4 gene is located. As observed in human, ZAKI-4 alpha mRNA was expressed only in brain whereas beta mRNA was distributed in other tissues as well, such as heart and skeletal muscle. ZAKI-4 alpha mRNA was lower in the cerebral cortex of hypothyroid mice. Injection of L-T(3) caused an increase in ZAKI-4 beta mRNA in heart; however, expression of neither ZAKI-4 alpha nor beta mRNA was influenced by thyroid status in other tissues. These results indicate that expression of ZAKI-4 alpha and beta isoforms is regulated by thyroid hormone in vivo, and the regulation is isoform- and tissue-specific.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipotiroidismo/genética , Proteínas Musculares/genética , Proteínas , Triyodotironina/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/fisiología , Inhibidores de la Calcineurina , Mapeo Cromosómico , Regulación de la Expresión Génica/efectos de los fármacos , Hipotiroidismo/metabolismo , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Proteínas Musculares/biosíntesis , Miocardio/metabolismo , Isoformas de Proteínas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA