Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(3): 399-405, 2021 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-33849831

RESUMEN

OBJECTIVE: To investigate the mechanism of the antidepressant-like effects of Chaihu Guizhi decoction (CGD). OBJECTIVE: Chaihu Guizhi decoction at the daily dose of 17 g/kg and solvent vehicle were administered by gavage in 12 and 14 male C57BL/6J mice for 7 consecutive days, respectively. Forced swimming test (FST), elevated plus maze (EPM) test, open field test (OFT) and novelty-suppressed feeding test (NSF) were performed to assess the depression- and anxiety-like behaviors and motor ability of the mice. We further used chronic social defeat stress (CSDS) and social interaction test to evaluate the antidepressant-like effects of CGD in comparison with the solvent vehicle. Western blotting and RT-qPCR were performed to detect the expressions of sirt1, p53, acetylated p53, and the neuron plasticity-related genes including synapsin I (Syn1), Rab4B, SNAP25 and tubulin beta4b in the hippocampus of the mice. OBJECTIVE: In FST, the immobility time of CGDtreated mice was decreased significantly (P < 0.05); no significant differences were found in the performances in EPM, NSF and OFT tests between the two groups. In social interaction test, the mouse models of CSDS treated with CGD showed significantly increased time in the interaction zone (P < 0.05). Compared with those in the vehicle group, the CGD-treated mouse models exhibited significantly increased protein level of SIRT1 and decreased p53 acetylation (P < 0.05) with up-regulated synapsin I mRNA expression in the hippocampus (P < 0.05); no significant difference were found in Rab (P=0.813), SNAP (P=0.820), or Tubb mRNA expressions (P=0.864) between the two groups. OBJECTIVE: CGD produces antidepressant-like effects in mice possibly through the sirt1-p53 signaling pathway and synaptic plasticity.


Asunto(s)
Sirtuina 1 , Proteína p53 Supresora de Tumor , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Sirtuina 1/genética , Estrés Psicológico/tratamiento farmacológico
2.
Plant Dis ; 99(2): 288, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30699603

RESUMEN

Cassia fistula, a member of the Fabaceae, known as the golden shower tree, is native to South Asia. It is now distributed worldwide and is popular as an ornamental plant as well as being used in herbal medicine. In October 2013, symptoms of stem canker were observed on C. fistula in a nursery (108°38' E, 22°87' N) in Nanning, Guangxi, China. The symptoms began as small brown lesions, which enlarged over several months to long, striped, slightly sunken lesions, 1 to 9 cm in width and 16 to 135 cm in length. The conspicuous cankers had vertical cracks outlining the canker and evenly spaced horizontal cracks, eventually resulting in whole plants dying back. The cankers were found on 90% of six-year-old plants in this nursery and were also observed in other plantings. On potato dextrose agar (PDA), isolates with similar morphological characteristics were consistently recovered from symptomatic plant tissues after surface sterilization in 75% ethanol for 30 sec and then in 0.1% mercuric chloride for 2 min. Over 100 conidia were examined from three isolates and were found to be elliptical and hyaline when immature, becoming dark brown, one-septate, and longitudinally striate when mature and ranging from 20 to 31 × 11 to 16 µm (average 25.5 × 13.6 µm). The rDNA internal transcribed spacer (ITS) region of isolate LC-1 was sequenced (GenBank Accession No. KM387285), and it showed 100% identity to Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (GenBank KC964548), confirming the morphological identification (2) as L. theobromae (also known as Botryosphaeria rhodina (Cooke) Arx). A culture of this isolate has been preserved in the Guangxi Academy of Agricultural Sciences fungal collection. The pathogenicity of the isolate was tested on healthy twigs and branches of C. fistula trees in a field setting at Guangxi Agricultural Vocational-Technical College, Nanning, Guangxi, in June and August 2014. For each treatment, five green twigs and five 2-year-old branches were used. Five adjacent needle punctures were made on each branch with a sterilized needle. A mycelial plug was then placed on the wound of each branch and wrapped with Parafilm. Control twigs were treated with sterile PDA plugs. One week later, typical lesions were observed on the inoculated branches, with symptoms becoming more extensive after two weeks, but no symptoms were seen on the controls. Koch's postulates were fulfilled by re-isolation of L. theobromae from diseased branches. L. theobromae is recognized as an important wood pathogen and has been reported to cause cankers, dieback, and fruit and root rots in over 500 different hosts, including perennial fruit and nut trees, vegetable crops, and ornamental plants (2). The fungus has been reported on C. fistula in India since the 1970s (1); however, to our knowledge, this is the first report of L. theobromae infecting C. fistula in China. References: (1) R. S. Mathur. The Coelomycetes of India. Bishen Singh Mahendra Pal Singh, Delhi, India, 1979. (2) J. R. Úrbez-Torres et al. Plant Dis. 92:519, 2008.

3.
Plant Dis ; 97(10): 1383, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30722156

RESUMEN

Lobelia chinensis is a perennial herbaceous plant in the family Campanulaceae that is native to China, where it grows well in moist to wet soils. It is commonly used as a Chinese herbal medicine. In May 2012, symptoms of leaf spot were observed on leaves of L. chinensis in Nanning, Guangxi Zhuang Autonomous Region, China. The leaf lesions began as small, water-soaked, pale greenish to grayish spots, which enlarged to gray to pale yellowish spots, 4 to 6 mm in diameter. At later stages, numerous acervuli appeared on the lesions. Acervuli were mostly epiphyllous, and 40 to 196 µm in diameter. On potato dextrose agar (PDA), a fungus was consistently recovered from symptomatic leaf samples, with a 93% isolation rate from 60 leaf pieces that were surface sterilized in 75% ethanol for 30 s and then in 0.1% mercuric chloride for 45 s. Three single-spore isolates were used to evaluate cultural and morphological characteristics of the pathogen. Setae were two to three septate, dark brown at the base, acicular, and up to 90 µm long. Conidia were long oblong-elliptical, guttulate, hyaline, and 11 to 20 × 4.1 to 6.3 µm (mean 15.2 × 5.1 µm). These morphological characteristics of the fungus were consistent with the description of Colletotrichum magna (teleomorph Glomerella magna Jenkins & Winstead) (1). The rDNA internal transcribed spacer (ITS) region of one isolate, LC-1, was sequenced (GenBank Accession No. KC815123), and it showed 100% identity to G. magna, GenBank HM163187.1, an isolate from Brazil cultured from papaya (2). Although KC815123 was identified as G. magna, it shows 99% identity to GenBank sequences from isolates of C. magna, and more research is needed to elucidate the relationships between these taxa, especially with consideration to host specificity. Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (1 × 106 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 30-day-old and 6- to 8-cm-high plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, gray spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of G. magna from diseased leaves. To our knowledge, this is the first report of G. magna infecting L. chinensis worldwide. References: (1) M. Z. Du et al. Mycologia 97:641, 2005. (2) R. J. Nascimento et al. Plant Dis. 94:1506, 2010.

4.
Plant Dis ; 97(5): 690, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-30722199

RESUMEN

Baphicacanthus cusia is a perennial herbaceous plant in the family Acanthaceae that is native to China, where it grows in warm temperate mountainous or hilly regions. It is commonly used as a Chinese herbal medicine. In March 2012, symptoms of leaf spot were observed on leaves of B. cusia in Long'an County, Guangxi, China, where this plant is extensively cultivated. Symptoms were initially small brown dots which developed into irregular to circular leaf spots. These spots enlarged and overlapped, extending until the 7- to 9-cm-long and 3- to 4-cm-wide leaves withered entirely, mostly within 2 months. On potato dextrose agar (PDA), the same fungus was cultured from 92% of 75 symptomatic leaf samples that had been surface sterilized in a 45-second dip in 0.1% mercuric chloride. Fungal structures were observed on diseased leaves: conidiophores (85 to 460 × 4 to 8 µm) were erect, brown, single or in clusters, and conidia (36 to 90 × 5 to 16 µm) were single or in chains of two to four, brown, cylindrical or obclavate, straight or slightly curved, with 3 to 18 pseudosepta and a conspicuous hilum. Three single-spore isolates were identified as Corynespora cassiicola (Berk & Curt.) Wei based on morphological and cultural characteristics (1). The rDNA internal transcribed spacer (ITS) region of one isolate, ZY-1, was sequenced (GenBank Accession No. JX908713), and it showed 100% identity to C. cassiicola, GenBank FJ852716, an isolate from Micronesia cultured from Ipomoea batatas (2). Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (5 × 104 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 60-day-old, 20-cm tall plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, dark brown spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of C. cassiicola from diseased leaves. To our knowledge, this is the first report of C. cassiicola infecting B. cusia worldwide. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) L. J. Dixon et al. Phytopathology 99:1015, 2009.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 18(3): 376-80, 1998 Jun.
Artículo en Chino | MEDLINE | ID: mdl-15810289

RESUMEN

A method of first derivative spectrophotometry for qualitative and quantitative analysis of tung oil adulterated in vegetable oils, including peanut oil, bean oil, rape seed oil, tea seed oil, palm oil and mixed vegetable oil, was established. The spectrum of tung oil features three valleys at 291.3, 278.3 and 266.4nm, and three peaks at 284.1, 271.5 and 260.7nm. At 291.3nm, the coefficient (deltaE(1%)1cm/deltalambda) was -1.03 x 10(3). When the concentration of tung oil adulterated in vegetable oils was downed to 0.1%, the above specialities still remain and the changes in wavelengths were not more than 0.7nm. The detection limit of the concentration of tung oil adulterated in vegetable oils was lower than 0.1%.


Asunto(s)
Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Aceites de Plantas/química , Espectrofotometría/métodos , Límite de Detección , Aceites de Plantas/análisis , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA