Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroendocrinol ; 34(5): e13065, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34918405

RESUMEN

Much about the neuroendocrine control of reproduction is inferred from changes in the episodic release of luteinizing hormone (LH), as measured in samples of peripheral blood. This, however, assumes that LH precisely mirrors gonadotropin-releasing hormone (GnRH) release from the hypothalamus. Because GnRH is not measurable in peripheral blood, characterization of the relationship between these two hormones required the simultaneous measurement of GnRH and LH in pituitary portal and peripheral blood, respectively. Here, we review the history of why and how portal blood collection was developed, the aspects of the true output of the central component of the hypothalamic-pituitary-gonadal axis that this methodology helped clarify, and conditions under which the pituitary fails to serve as an adequate bioassay for the release pattern of GnRH.


Asunto(s)
Hormona Luteinizante , Hipófisis , Hormona Liberadora de Gonadotropina , Hipotálamo
2.
STAR Protoc ; 2(2): 100589, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34159322

RESUMEN

Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can be used for sequencing or transcript quantification. This protocol enables the identification of actively translated mRNAs in varying physiological states and can be modified for use in any neuronal subpopulation labeled with a ribo-tag. We use leptin receptor-expressing neurons as an example to illustrate the protocol. For complete details on the use and execution of this protocol, please refer to Han et al. (2020).


Asunto(s)
Cromatografía de Afinidad/métodos , Hipotálamo/metabolismo , ARN Mensajero/aislamiento & purificación , Ribosomas/metabolismo , Animales , Proteínas Fluorescentes Verdes/genética , Ratones , Neuronas/metabolismo , ARN Mensajero/metabolismo
3.
J Neuroendocrinol ; 32(1): e12724, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31054210

RESUMEN

The central nervous system regulates fertility via the release of gonadotrophin-releasing hormone (GnRH). This control revolves around the hypothalamic-pituitary-gonadal axis, which operates under traditional homeostatic feedback by sex steroids from the gonads in males and most of the time in females. An exception is the late follicular phase in females, when homeostatic feedback is suspended and a positive-feedback response to oestradiol initiates the preovulatory surges of GnRH and luteinising hormone. Here, we briefly review the history of how mechanisms underlying central control of ovulation by circulating steroids have been studied, discuss the relative merit of different model systems and integrate some of the more recent findings in this area into an overall picture of how this phenomenon occurs.


Asunto(s)
Estradiol/sangre , Retroalimentación Fisiológica/fisiología , Gónadas/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/fisiología , Sistemas Neurosecretores/fisiología , Hipófisis/fisiología , Animales , Hormona Liberadora de Gonadotropina/sangre , Humanos , Hormona Luteinizante/sangre
4.
Elife ; 82019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30946012

RESUMEN

The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.


Asunto(s)
Hipotálamo/fisiología , Neuronas/fisiología , Reproducción , Conducta Sexual Animal , Animales , Estradiol/metabolismo , Receptor alfa de Estrógeno/deficiencia , Femenino , Técnicas de Inactivación de Genes , Kisspeptinas/análisis , Ratones Noqueados , Neuronas/química
5.
Endocrinology ; 159(4): 1922-1940, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522155

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.


Asunto(s)
Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Análisis de Secuencia de ARN
6.
J Neurosci ; 38(5): 1061-1072, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29114074

RESUMEN

Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol.SIGNIFICANCE STATEMENT The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and in vivo hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.


Asunto(s)
Estradiol/farmacología , Glutamatos/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Kisspeptinas/fisiología , Neuronas/fisiología , Receptores de Estrógenos/efectos de los fármacos , Transmisión Sináptica/fisiología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Dinorfinas/farmacología , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Hipotálamo/efectos de los fármacos , Hormona Luteinizante/fisiología , Ratones , Núcleos Talámicos de la Línea Media/fisiología , Neuronas/efectos de los fármacos , Hipófisis/efectos de los fármacos , Hipófisis/fisiología , Proestro/fisiología , Receptores Ionotrópicos de Glutamato/efectos de los fármacos , Receptores Ionotrópicos de Glutamato/fisiología , Transmisión Sináptica/efectos de los fármacos , Receptor Relacionado con Estrógeno ERRalfa
7.
Endocrinology ; 157(4): 1555-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26862996

RESUMEN

A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells. Arcuate nucleus Kiss1 expression was elevated in ERα(Tac2)KO and ERα(Kiss1)KO females independent of gonadal hormones, whereas rostral hypothalamic Kiss1 expression was normal in ERα(Tac2)KO but decreased in ERα(Kiss1)KO females; this suggests that ERα in rostral Kiss1 cells is crucial for control of Kiss1 expression in these cells. Both ERα(Kiss1)KO and ERα(Tac2)KO females displayed early vaginal opening, early and persistent vaginal cornification, increased gonadotropins, uterine hypertrophy, and other evidence of estrogen excess. Thus, deletion of ERα in Tac2 neurons suffices to drive precocious gonadal hyperstimulation, demonstrating that ERα in Tac2 neurons typically restrains pubertal onset and hypothalamic reproductive drive.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Precursores de Proteínas/metabolismo , Maduración Sexual/fisiología , Taquicininas/metabolismo , Animales , Composición Corporal/genética , Composición Corporal/fisiología , Dinorfinas/genética , Dinorfinas/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Gonadotropinas/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Ovariectomía , Ovario/metabolismo , Precursores de Proteínas/genética , Reproducción/genética , Reproducción/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Maduración Sexual/genética , Taquicininas/genética , Factores de Tiempo , Útero/metabolismo
8.
J Neurosci ; 30(40): 13373-83, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926664

RESUMEN

Pulsatile release of gonadotropin-releasing hormone (GnRH) is required for fertility and is regulated by steroid feedback. Hyperpolarization-activated currents (I(h)) play a critical role in many rhythmic neurons. We examined the contribution of I(h) to the membrane and firing properties of GnRH neurons and the modulation of this current by steroid milieu. Whole-cell voltage- and current-clamp recordings were made of GFP-identified GnRH neurons in brain slices from male mice that were gonad-intact, castrated, or castrated and treated with estradiol implants. APV, CNQX, and bicuculline were included to block fast synaptic transmission. GnRH neurons (47%) expressed a hyperpolarization-activated current with pharmacological and biophysical characteristics of I(h). The I(h)-specific blocker ZD7288 reduced hyperpolarization-induced sag and rebound potential, decreased GnRH neuron excitability and action potential firing, and hyperpolarized membrane potential in some cells. ZD7288 also altered the pattern of burst firing and reduced the slope of recovery from the after-hyperpolarization potential. Activation of I(h) by hyperpolarization increased spike frequency, whereas inactivation of I(h) by depolarization reduced spike frequency. Castration increased I(h) compared with that in gonad-intact males. This effect was reversed by in vivo estradiol replacement. Together, these data indicate I(h) provides an excitatory drive in GnRH neurons that contributes to action potential burst firing and that estradiol regulates I(h) in these cells. As estradiol is the primary central negative feedback hormone on GnRH neuron firing in males, this provides insight into the mechanisms by which steroid hormones potentially alter the intrinsic properties of GnRH neurons to change their activity.


Asunto(s)
Potenciales de Acción/fisiología , Polaridad Celular/fisiología , Retroalimentación Fisiológica/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Fármacos Cardiovasculares/farmacología , Polaridad Celular/efectos de los fármacos , Estradiol/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Antagonistas del GABA/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Pirimidinas/farmacología
9.
Endocrinology ; 146(12): 5374-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16123153

RESUMEN

gamma-Aminobutyric acid (GABA) provides a major synaptic input to GnRH neurons. GnRH neurons maintain high intracellular chloride levels and respond to exogenous GABA with depolarization and action potential firing. We examined the role of synaptic GABA type A receptor (GABA(A)R) activation on the firing activity of GnRH neurons. Targeted extracellular recordings were used to detect firing activity of GnRH neurons in brain slices from adult female mice. Because the brain slice preparation preserves both glutamatergic and GABAergic neuronal networks, the effects of GABA(A)Rs on GnRH neurons were isolated by blocking ionotropic glutamatergic receptors (iGluR). With iGluR blocked, many GnRH neurons remained spontaneously active. Consistent with an excitatory role for GABA, subsequent blockade of GABA(A)Rs suppressed the firing rate in active cells from diestrous females by approximately 40% (P < 0.05; n = 10). GABA(A)R blockade did not affect inactive cells (n = 7), indicating that GABA(A)R-mediated inhibition was not responsible for the lack of firing. In prenatally androgenized females, GnRH neurons exhibit larger, more frequent GABAergic postsynaptic currents than control females. Most cells from prenatally androgenized animals fired spontaneously, and the firing rate was suppressed approximately 80% after GABA(A)R blockade (P < 0.01; n = 8). Blocking GABA(A)R without blocking iGluRs increased the firing rate in GnRH neurons from diestrous females (P < 0.05; n = 6), perhaps attributable to hyperexcitability within the slice network. Our results indicate that GABAergic inputs help generate a portion of action potentials in GnRH neurons; this fraction depends on the level of GABA transmission and postsynaptic responsiveness. The complexities of the GnRH neuron response to GABA make this a potentially critical integration point for central regulation of fertility.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción , Andrógenos/farmacología , Animales , Diestro , Dihidrotestosterona/farmacología , Electrofisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A , Ácido Glutámico/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Técnicas In Vitro , Ratones , Ratones Transgénicos , Red Nerviosa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Receptores de Glutamato/efectos de los fármacos , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
10.
Comp Biochem Physiol A Mol Integr Physiol ; 136(3): 693-700, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14613797

RESUMEN

Gonadotropin-releasing hormone (GnRH) is critical for the initiation and maintenance of reproduction in vertebrates. Information regarding GnRH release is abundant in mammals, but absent in poikilothermic tetrapods. In this study, we established a novel GnRH enzyme immunoassay (EIA) to measure GnRH release over time from hypothalamic explants isolated from mature field-caught and commercially-acquired male bullfrogs, Rana catesbeiana. Hypothalamic explants from rats were used as a positive control to test the sensitivity and accuracy of our EIA and to ensure our in vitro system could detect GnRH pulses. Prominent GnRH pulses were present in the majority (9/10) of rat hypothalamic explants, but absent in all (17/17) of the commercial bullfrogs and the majority (5/8) of field-caught bullfrogs. In three cases where GnRH pulses were observed in field-caught bullfrogs, there was only one pulse during the 2-h incubation period; high-frequency pulses similar to those observed in rats were not observed. Veratridine, which opens voltage-gated sodium channels, stimulated GnRH release in all explants cultured in the presence of Ca(2+), demonstrating explant viability. The levels of both spontaneous and veratridine-induced GnRH release were significantly higher in field-caught than commercial bullfrogs. This study demonstrated, for the first time, the temporal pattern of GnRH release in a poikilothermic tetrapod. Further, our results suggest the levels and patterns of GnRH output in bullfrogs are subject to the dynamic regulation by physiological and environmental cues.


Asunto(s)
Hormona Liberadora de Gonadotropina/análisis , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Técnicas para Inmunoenzimas/métodos , Rana catesbeiana/metabolismo , Animales , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Estándares de Referencia
11.
J Neurosci ; 23(24): 8578-85, 2003 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-13679427

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction and are inhibited by negative energy balance. In normal adults, these neurons maintain elevated intracellular chloride so that GABA(A) receptor activation is excitatory. We hypothesized that fasting alters homeostatic mechanisms to eliminate excitatory responses to GABA but rejected this hypothesis when brief, local GABA application elicited action currents in GnRH neurons from fed and fasted mice. This response was specific to GABA(A) receptors, because glycine elicited no response. We next found that fasting reduced the frequency of spontaneous GABAergic postsynaptic currents (PSCs) and that this was reversed by in vivo treatment with leptin during the fast. In the presence of tetrodotoxin to minimize presynaptic actions, leptin also potentiated the postsynaptic response of these cells to GABA(A) receptor activation. Postsynaptic effects of leptin on GABAergic miniature PSCs were eliminated by inhibiting JAK2/3 (Janus kinase), the tyrosine kinase through which leptin receptors signal. In all experiments, elimination of PSCs at ECl or by treatment with the GABAA receptor antagonist bicuculline confirmed that PSCs were specifically mediated by GABA(A) receptor chloride channels. These data demonstrate that fasting and leptin act presynaptically and postsynaptically to alter GABAergic drive to GnRH neurons, providing evidence for GABAergic communication of metabolic cues to GnRH neurons, and suggest the possibility for functional leptin receptors on GnRH neurons. They further demonstrate cytokine modulation of the postsynaptic response to GABA in mammals, which may be important to central neural regulation in both healthy and diseased states.


Asunto(s)
Fertilidad/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Animales , Glucemia , Cloruros/metabolismo , Metabolismo Energético/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ayuno/fisiología , Femenino , Proteínas Fluorescentes Verdes , Hipotálamo/citología , Hipotálamo/fisiología , Técnicas In Vitro , Leptina/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estado Nutricional/fisiología , Técnicas de Placa-Clamp , Área Preóptica/citología , Área Preóptica/fisiología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Leptina , Transducción de Señal/fisiología , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA