Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Helicobacter ; 28(5): e13004, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37391943

RESUMEN

Nano-structure Cu(II) complex [Cu(AMAB)2 ]Cl2 with Schiff base (AMAB) derived from the condensation between 4-(dimethylamino)benzaldehyde and amoxicillin trihydrate was prepared. (AMAB) Schiff base and its Cu(II) complex were identified and confirmed by different physicochemical techniques. The Schiff base (AMAB) was coordinated to copper ion through carbonyl oxygen and imine nitrogen donor sites. X-ray powder diffraction shows a cubic crystal system of the Cu(II) complex. The density functional theory was used to optimize the structure geometries of the investigated compounds. The molecular docking of the active amino acids of the investigated proteins' interactions with the tested compounds was evaluated. The bactericidal or bacteriostatic effect of the compounds was screened against some bacterial strains. The activity of Cu-chelate against Gram-negative bacteria was mainly more effective than its (AMAB) ligand and vice versa in the case of Gram-positive bacteria. The biological activity of the prepared compounds with biomolecules calf thymus DNA (CT-DNA) was determined by electronic absorption spectra and DNA gel electrophoresis technique. All studies revealed that the Cu-chelate derivative exhibited better binding affinity to both CT-DNA than the AMAB and amoxicillin itself. The anti-inflammatory effect of the designed compounds was determined by testing their protein denaturation inhibitory activity spectrophotometrically. All obtained data supported that the designed nano-Cu(II) complex with Schiff base (AMAB) is a potent bactericide against H. pylori, and exhibits anti-inflammatory activity. The dual inhibition effects of the designed compound represent a modern therapeutic approach with extended spectrum of action. Therefore, it can act as good drug target in antimicrobial and anti-inflammtory therapies. Finally, H. pylori resistance to amoxicillin is absent or rare in many countries, thus amoxicillin nanoparticles may be beneficial for countries where amoxicillin resistance is reported.


Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/metabolismo , Bases de Schiff/farmacología , Bases de Schiff/química , Cobre/farmacología , Cobre/química , Amoxicilina/farmacología , Simulación del Acoplamiento Molecular , Infecciones por Helicobacter/tratamiento farmacológico , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , ADN/química , ADN/metabolismo , Pruebas de Sensibilidad Microbiana
2.
Biomed Res Int ; 2018: 7658238, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622962

RESUMEN

Antibiotic-resistant and biofilm-forming bacteria have surprisingly increased over recent years. On the contrary, the rate of development of new antibiotics to treat these emerging superbugs is very slow. Therefore, the aim of this study was to prepare novel nanobiotic formulations to improve the antimicrobial activity of three antibiotics (linezolid, doxycycline, and clindamycin) against Staphylococci. Antibiotics were formulated as nanoemulsions and evaluated for their antimicrobial activities and cytotoxicities. Cytotoxicity of the conventional antibiotics and nanobiotics was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on rat hepatocytes. Half-maximal inhibitory concentration (IC50) was estimated from an experimentally derived dose-response curve for each concentration using GraphPad Prism software. Upon quantitative assessment of Staphylococcus biofilm formation, eighty-four isolates (66.14 %) were biofilm forming. Linezolid and doxycycline nanobiotics exhibited promising antibacterial activities. On the contrary, clindamycin nanobiotic exhibited poor antibacterial activity. Minimum biofilm inhibitory concentrations showed that 73.68 %, 45.6%, and 5.2% of isolates were sensitive to linezolid, doxycycline, and clindamycin nanobiotics, respectively. Results of this study revealed that antibiotics loaded in nanosystems had a higher antimicrobial activity and lower cytotoxicities as compared to those of conventional free antibiotics, indicating their potential therapeutic values.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Programas Informáticos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus/fisiología , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/metabolismo , Hepatocitos/microbiología , Hepatocitos/patología , Ratas , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA