Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pathol Res Pract ; 253: 155007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061270

RESUMEN

Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , MicroARNs , Humanos , Anciano , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , ARN Mensajero , Biomarcadores/metabolismo
2.
Pathol Res Pract ; 250: 154807, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696244

RESUMEN

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) is characterized by poor prognosis, rapid progression, serious clinical behavior, an elevated risk of metastasis, and resistance to standard treatments. Traditional medicine practitioners value Rumex vesicarius L. (RMV) for a variety of reasons, including the plant's antioxidant capabilities. Our study's goals were to ascertain the efficacy of RMV alone and in combination with sorafenib (SOR) against the aggressive TNBC cell line (MDA-MB-231) and use in vitro and in silico analysis to deduce the fundamental mechanism of action. METHODS: In the current study, molecular operating environment (MOE, 2019.0102) software was used for performing molecular docking. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to determine the cytotoxicity of RMV, SOR or RMV/SOR combination against the TNBC cell line MDA-MB-231 cells. The effects of RMV, SOR, and RMV and SOR combining on mRNAs expressions of the target genes including mTOR, p21, JNK, and BCl2 were evaluated. In TNBC cells, the relative expressions of mRNAs of the genes were examined by using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: In our experiments, we discovered that both RMV extracts alone and in combination with SOR considerably reduced cancer cell proliferation (IC50 = 0.83 and 0.19 µM, respectively). Additionally, the expression of the tumor suppressor gene p21 was elevated whereas the expression of the invasion and anti-apoptosis genes BCl2, mTOR, and JNK were significantly decreased after treatment with RMV and SOR. Based on in silico analysis, it was found that RMV extract contains bioactive chemicals with a high affinity for inhibiting JNK and VEGFR-2. CONCLUSION: In conclusion, in vitro and in silico investigations show that the RMV extract improves the anticancer efficiency of SOR through molecular processes involving the downregulation of mTOR, BCl2, and JNK1 and overexpression of p21 tumor suppressor gene. Finally, we suggest conducting additional in vivo investigations on RMV and its bioactive components to verify their potential in cancer therapy.

3.
Biomed Pharmacother ; 164: 114918, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37216705

RESUMEN

Sorafenib, a multikinase inhibitor, is a first-line treatment for advanced hepatocellular carcinoma, but its long-term effectiveness is limited by the emergence of resistance mechanisms. One such mechanism is the reduction of microvessel density and intratumoral hypoxia caused by prolonged sorafenib treatment. Our research has demonstrated that HSP90 plays a critical role in conferring resistance to sorafenib in HepG2 cells under hypoxic conditions and N-Nitrosodiethylamine-exposed mice as well. This occurs through the inhibition of necroptosis on the one hand and the stabilization of HIF-1α on the other hand. To augment the effects of sorafenib, we investigated the use of ganetespib, an HSP90 inhibitor. We found that ganetespib activated necroptosis and destabilized HIF-1α under hypoxia, thus enhancing the effectiveness of sorafenib. Additionally, we discovered that LAMP2 aids in the degradation of MLKL, which is the mediator of necroptosis, through the chaperone-mediated autophagy pathway. Interestingly, we observed a significant negative correlation between LAMP2 and MLKL. These effects resulted in a reduction in the number of surface nodules and liver index, indicating a regression in tumor production rates in mice with HCC. Furthermore, AFP levels decreased. Combining ganetespib with sorafenib showed a synergistic cytotoxic effect and resulted in the accumulation of p62 and inhibition of macroautophagy. These findings suggest that the combined therapy of ganetespib and sorafenib may offer a promising approach for the treatment of hepatocellular carcinoma by activating necroptosis, inhibiting macroautophagy, and exhibiting a potential antiangiogenic effect. Overall, continued research is critical to establish the full therapeutic potential of this combination therapy.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Necroptosis , Neoplasias Hepáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Hipoxia/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA