Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 10(44): 20519-20525, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397703

RESUMEN

Magnetic hyperthermia is a potential technique for cancer therapy that exploits heat generated by magnetic nanoparticles to kill cancerous cells. Many studies have shown that magnetic hyperthermia is effective at killing cancer cells both in vitro and in vivo, however little attention has been paid to the cellular functioning of the surviving cells. We report here new evidence demonstrating the onset of thermally triggered differentiation in osteosarcoma cancer cells that survive magnetic hyperthermia treatment. This raises the possibility that in addition to causing cell death, magnetic hyperthermia could induce surviving cancer cells to form more mature cell types and thereby inhibit their capacity to self-renew. Such processes could prove to be as important as cell death when considering magnetic hyperthermia for treating cancer.


Asunto(s)
Nanopartículas de Magnetita/química , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/análisis , ADN/metabolismo , Humanos , Hipertermia Inducida , Nanopartículas de Magnetita/toxicidad , Espectrometría de Fluorescencia , Temperatura
2.
Nanoscale ; 6(21): 12958-70, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25232657

RESUMEN

Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.


Asunto(s)
Bacterias/metabolismo , Compuestos Férricos/química , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Anisotropía , Ácido Cítrico/química , Cobalto/química , Medios de Contraste/química , Geobacter , Calor , Campos Magnéticos , Magnetismo , Microscopía Electrónica de Transmisión , Nanotecnología , Tamaño de la Partícula , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA