Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35408740

RESUMEN

There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Olea , Triterpenos , Animales , Antocianinas/análisis , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Antineoplásicos/análisis , Antioxidantes/química , Suplementos Dietéticos , Frutas/química , Olea/química , Aceite de Oliva/química , Fitoquímicos/análisis , Extractos Vegetales/química , Polifenoles/química , Triterpenos/análisis , Triterpenos/farmacología , Verduras
2.
Phytomedicine ; 23(12): 1301-1311, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765349

RESUMEN

BACKGROUND: Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. PURPOSE: Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. METHODS: Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. RESULTS: MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. CONCLUSION: MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Olea/química , Triterpenos/farmacología , Células 3T3-L1 , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/genética , Glucosa/metabolismo , Ratones , PPAR gamma/genética , ARN/biosíntesis , ARN/genética , Triglicéridos/metabolismo , Triterpenos/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-26236377

RESUMEN

Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA