Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 12: CD005067, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29192424

RESUMEN

BACKGROUND: Cutaneous leishmaniasis, caused by a parasitic infection, is considered one of the most serious skin diseases in many low- and middle-income countries. Old World cutaneous leishmaniasis (OWCL) is caused by species found in Africa, Asia, the Middle East, the Mediterranean, and India. The most commonly prescribed treatments are antimonials, but other drugs have been used with varying success. As OWCL tends to heal spontaneously, it is necessary to justify the use of systemic and topical treatments. This is an update of a Cochrane Review first published in 2008. OBJECTIVES: To assess the effects of therapeutic interventions for the localised form of Old World cutaneous leishmaniasis. SEARCH METHODS: We updated our searches of the following databases to November 2016: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, and LILACS. We also searched five trials registers and checked the reference lists of included studies for further references to relevant randomised controlled trials (RCTs). We wrote to national programme managers, general co-ordinators, directors, clinicians, WHO-EMRO regional officers of endemic countries, pharmaceutical companies, tropical medicine centres, and authors of relevant papers for further information about relevant unpublished and ongoing trials. We undertook a separate search for adverse effects of interventions for Old World cutaneous leishmaniasis in September 2015 using MEDLINE. SELECTION CRITERIA: Randomised controlled trials of either single or combination treatments in immunocompetent people with OWCL confirmed by smear, histology, culture, or polymerase chain reaction. The comparators were either no treatment, placebo/vehicle, and/or another active compound. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and risk of bias and extracted data. We only synthesised data when we were able to identify at least two studies investigating similar treatments and reporting data amenable to pooling. We also recorded data about adverse effects from the corresponding search. MAIN RESULTS: We included 89 studies (of which 40 were new to this update) in 10,583 people with OWCL. The studies included were conducted mainly in the Far or Middle East at regional hospitals, local healthcare clinics, and skin disease research centres. Women accounted for 41.5% of the participants (range: 23% to 80%). The overall mean age of participants was 25 years (range 12 to 56). Most studies lasted between two to six months, with the longest lasting two years; average duration was four months. Most studies were at unclear or high risk for most bias domains. A lack of blinding and reporting bias were present in almost 40% of studies. Two trials were at low risk of bias for all domains. Trials reported the causative species poorly.Here we provide results for the two main comparisons identified: itraconazole (200 mg for six to eight weeks) versus placebo; and paromomycin ointment (15% plus 10% urea, twice daily for 14 days) versus vehicle.In the comparison of oral itraconazole versus placebo, at 2.5 months' follow up, 85/125 participants in the itraconazole group achieved complete cure compared to 54/119 in the placebo group (RR 3.70, 95% CI 0.35 to 38.99; 3 studies; 244 participants). In one study, microbiological or histopathological cure of skin lesions only occurred in the itraconazole group after a mean follow-up of 2.5 months (RR 17.00, 95% CI 0.47 to 612.21; 20 participants). However, although the analyses favour oral itraconazole for these outcomes, we cannot be confident in the results due to the very low certainty evidence. More side effects of mild abdominal pain and nausea (RR 2.36, 95% CI 0.74 to 7.47; 3 studies; 204 participants) and mild abnormal liver function (RR 3.08, 95% CI 0.53 to 17.98; 3 studies; 84 participants) occurred in the itraconazole group (as well as reports of headaches and dizziness), compared with the placebo group, but again we rated the certainty of evidence as very low so are unsure of the results.When comparing paromomycin with vehicle, there was no difference in the number of participants who achieved complete cure (RR of 1.00, 95% CI 0.86, 1.17; 383 participants, 2 studies) and microbiological or histopathological cure of skin lesions after a mean follow-up of 2.5 months (RR 1.03, CI 0.88 to 1.20; 383 participants, 2 studies), but the paromomycin group had more skin/local reactions (such as inflammation, vesiculation, pain, redness, or itch) (RR 1.42, 95% CI 0.67 to 3.01; 4 studies; 713 participants). For all of these outcomes, the certainty of evidence was very low, meaning we are unsure about these results.Trial authors did not report the percentage of lesions cured after the end of treatment or speed of healing for either of these key comparisons. AUTHORS' CONCLUSIONS: There was very low-certainty evidence to support the effectiveness of itraconazole and paromomycin ointment for OWCL in terms of cure (i.e. microbiological or histopathological cure and percentage of participants completely cured). Both of these interventions incited more adverse effects, which were mild in nature, than their comparisons, but we could draw no conclusions regarding safety due to the very low certainty of the evidence for this outcome.We downgraded the key outcomes in these two comparisons due to high risk of bias, inconsistency between the results, and imprecision. There is a need for large, well-designed international studies that evaluate long-term effects of current therapies and enable a reliable conclusion about treatments. Future trials should specify the species of leishmaniasis; trials on types caused by Leishmania infantum, L aethiopica, andL donovani are lacking. Research into the effects of treating women of childbearing age, children, people with comorbid conditions, and those who are immunocompromised would also be helpful.It was difficult to evaluate the overall efficacy of any of the numerous treatments due to the variable treatment regimens examined and because RCTs evaluated different Leishmania species and took place in different geographical areas. Some outcomes we looked for but did not find were degree of functional and aesthetic impairment, change in ability to detect Leishmania, quality of life, and emergence of resistance. There were only limited data on prevention of scarring.


Asunto(s)
Antiprotozoarios/uso terapéutico , Itraconazol/uso terapéutico , Leishmaniasis Cutánea/terapia , Paromomicina/uso terapéutico , Adulto , Animales , Antiinfecciosos/uso terapéutico , Antiprotozoarios/administración & dosificación , Terapias Complementarias/métodos , Crioterapia/métodos , Asia Oriental , Femenino , Calor/uso terapéutico , Humanos , Itraconazol/administración & dosificación , Terapia por Láser , Leishmania major , Leishmania tropica , Masculino , Persona de Mediana Edad , Medio Oriente , Bases Oleosas/administración & dosificación , Paromomicina/administración & dosificación , Fotoquimioterapia , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Cochrane Database Syst Rev ; 11: CD005067, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149474

RESUMEN

BACKGROUND: Cutaneous leishmaniasis, caused by a parasitic infection, is considered one of the most serious skin diseases in many low- and middle-income countries. Old World cutaneous leishmaniasis (OWCL) is caused by species found in Africa, Asia, the Middle East, the Mediterranean, and India. The most commonly prescribed treatments are antimonials, but other drugs have been used with varying success. As OWCL tends to heal spontaneously, it is necessary to justify the use of systemic and topical treatments. This is an update of a Cochrane Review first published in 2008. OBJECTIVES: To assess the effects of therapeutic interventions for the localised form of Old World cutaneous leishmaniasis. SEARCH METHODS: We updated our searches of the following databases to November 2016: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, and LILACS. We also searched five trials registers and checked the reference lists of included studies for further references to relevant randomised controlled trials (RCTs). We wrote to national programme managers, general co-ordinators, directors, clinicians, WHO-EMRO regional officers of endemic countries, pharmaceutical companies, tropical medicine centres, and authors of relevant papers for further information about relevant unpublished and ongoing trials. We undertook a separate search for adverse effects of interventions for Old World cutaneous leishmaniasis in September 2015 using MEDLINE. SELECTION CRITERIA: Randomised controlled trials of either single or combination treatments in immunocompetent people with OWCL confirmed by smear, histology, culture, or polymerase chain reaction. The comparators were either no treatment, placebo/vehicle, and/or another active compound. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and risk of bias and extracted data. We only synthesised data when we were able to identify at least two studies investigating similar treatments and reporting data amenable to pooling. We also recorded data about adverse effects from the corresponding search. MAIN RESULTS: We included 89 studies (of which 40 were new to this update) in 10,583 people with OWCL. The studies included were conducted mainly in the Far or Middle East at regional hospitals, local healthcare clinics, and skin disease research centres. Women accounted for 41.5% of the participants (range: 23% to 80%). The overall mean age of participants was 25 years (range 12 to 56). Most studies lasted between two to six months, with the longest lasting two years; average duration was four months. Most studies were at unclear or high risk for most bias domains. A lack of blinding and reporting bias were present in almost 40% of studies. Two trials were at low risk of bias for all domains. Trials reported the causative species poorly.Here we provide results for the two main comparisons identified: itraconazole (200 mg for six to eight weeks) versus placebo; and paromomycin ointment (15% plus 10% urea, twice daily for 14 days) versus vehicle.In the comparison of oral itraconazole versus placebo, at 2.5 months' follow up, 85/125 participants in the itraconazole group achieved complete cure compared to 54/119 in the placebo group (RR 3.70, 95% CI 0.35 to 38.99; 3 studies; 244 participants). In one study, microbiological or histopathological cure of skin lesions only occurred in the itraconazole group after a mean follow-up of 2.5 months (RR 17.00, 95% CI 0.47 to 612.21; 20 participants). However, although the analyses favour oral itraconazole for these outcomes, we cannot be confident in the results due to the very low certainty evidence. More side effects of mild abdominal pain and nausea (RR 2.36, 95% CI 0.74 to 7.47; 3 studies; 204 participants) and mild abnormal liver function (RR 3.08, 95% CI 0.53 to 17.98; 3 studies; 84 participants) occurred in the itraconazole group (as well as reports of headaches and dizziness), compared with the placebo group, but again we rated the certainty of evidence as very low so are unsure of the results.When comparing paromomycin with vehicle, there was no difference in the number of participants who achieved complete cure (RR of 1.00, 95% CI 0.86, 1.17; 383 participants, 2 studies) and microbiological or histopathological cure of skin lesions after a mean follow-up of 2.5 months (RR 1.03, CI 0.88 to 1.20; 383 participants, 2 studies), but the paromomycin group had more skin/local reactions (such as inflammation, vesiculation, pain, redness, or itch) (RR 1.42, 95% CI 0.67 to 3.01; 4 studies; 713 participants). For all of these outcomes, the certainty of evidence was very low, meaning we are unsure about these results.Trial authors did not report the percentage of lesions cured after the end of treatment or speed of healing for either of these key comparisons. AUTHORS' CONCLUSIONS: There was very low-certainty evidence to support the effectiveness of itraconazole and paromomycin ointment for OWCL in terms of cure (i.e. microbiological or histopathological cure and percentage of participants completely cured). Both of these interventions incited more adverse effects, which were mild in nature, than their comparisons, but we could draw no conclusions regarding safety due to the very low certainty of the evidence for this outcome.We downgraded the key outcomes in these two comparisons due to high risk of bias, inconsistency between the results, and imprecision. There is a need for large, well-designed international studies that evaluate long-term effects of current therapies and enable a reliable conclusion about treatments. Future trials should specify the species of leishmaniasis; trials on types caused by Leishmania infantum, L aethiopica, andL donovani are lacking. Research into the effects of treating women of childbearing age, children, people with comorbid conditions, and those who are immunocompromised would also be helpful.It was difficult to evaluate the overall efficacy of any of the numerous treatments due to the variable treatment regimens examined and because RCTs evaluated different Leishmania species and took place in different geographical areas. Some outcomes we looked for but did not find were degree of functional and aesthetic impairment, change in ability to detect Leishmania, quality of life, and emergence of resistance. There were only limited data on prevention of scarring.


Asunto(s)
Leishmaniasis Cutánea/terapia , Animales , Antiinfecciosos/efectos adversos , Antiinfecciosos/uso terapéutico , Antiprotozoarios/efectos adversos , Antiprotozoarios/uso terapéutico , Terapias Complementarias , Crioterapia , Calor/uso terapéutico , Humanos , Itraconazol/efectos adversos , Itraconazol/uso terapéutico , Terapia por Láser , Leishmania major , Leishmania tropica , Paromomicina/efectos adversos , Paromomicina/uso terapéutico , Fotoquimioterapia , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Drugs ; 73(17): 1889-920, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24170665

RESUMEN

Estimated worldwide incidence of tegumentary leishmaniasis (cutaneous leishmaniasis [CL] and mucocutaneous leishmaniasis [MCL]) is over 1.5 million cases per year in 82 countries, with 90 % of cases occurring in Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria. Current treatments of CL are poorly justified and have sub-optimal effectiveness. Treatment can be based on topical or systemic regimens. These different options must be based on Leishmania species, geographic regions, and clinical presentations. In certain cases of Old World CL (OWCL), lesions can spontaneously heal without any need for therapeutic intervention. Local therapies (thermotherapy, cryotherapy, paromomycin ointment, local infiltration with antimonials) are good options with less systemic toxicity, reserving systemic treatments (azole drugs, miltefosine, antimonials, amphotericin B formulations) mainly for complex cases. The majority of New World CL (NWCL) types require systemic treatment (mainly with pentavalent antimonials), either to speed the healing or to prevent dissemination to oral-nasal mucosa as MCL (NWMCL). These types of lesions are potentially serious and always require systemic-based regimens, mainly antimonials and pentamidine; however, the associated immunotherapy is promising. This paper is an exhaustive review of the published literature on the treatment of OWCL, NWCL and NWMCL, and provides treatment recommendations stratified according to their level of evidence regarding the species of Leishmania implicated and the geographical location of the infection.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmaniasis Cutánea/terapia , Leishmaniasis Mucocutánea/terapia , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/efectos adversos , Crioterapia/métodos , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Leishmaniasis Cutánea/epidemiología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Mucocutánea/epidemiología , Leishmaniasis Mucocutánea/parasitología , Pentamidina/administración & dosificación , Pentamidina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA