Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Nephrol ; 35(1): 40-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22179117

RESUMEN

BACKGROUND/AIMS: Reduced renal L-arginine (L-Arg) synthesis/transport, induction of arginases and increased endogenous NOS inhibitor, asymmetric dimethylarginine (ADMA) will inhibit NO production. This study investigated pathways of L-Arg synthesis/uptake/utilization, ADMA degradation and oxidant/antioxidants in puromycin aminonucleoside (PAN) chronic kidney disease (CKD). METHODS: Rats were given low- (LD) or high-dose (HD) PAN and followed for 11 weeks for proteinuria. BP was measured and blood and tissues were harvested and analyzed for abundance of argininosuccinate synthase (ASS) and lyase (ASL), arginase, cationic amino acid transporter (CAT1) and dimethylargininedimethylaminohydrolase (DDAH) in kidney, cortex, aorta and liver. Arginase and DDAH activity, plasma L-Arg and ADMA, renal pathology and creatinine clearances were also measured. RESULTS: PAN caused dose-dependent kidney damage and hypertension and creatinine clearance fell in HD-PAN. Renal ASS fell in HD-PAN, renal cortex and aortic ASL and membrane CAT1 fell in both PAN groups. There was no activation of renal arginase, but aortic arginase increased in LD-PAN. Renal DDAH activity fell moderately in LD-PAN and markedly in HD-PAN where hepatic DDAH activity also fell. Plasma L-Arg was unchanged while ADMA rose moderately and dose-dependently with PAN. There were several indices of oxidative stress which was most prominent in HD-PAN. CONCLUSION: Reduction in renal ASS/ASL and loss of renal cortex CAT1 compromises renal L-Arg synthesis and release. Loss of aortic CAT1 impairs L-Arg uptake. Increased plasma ADMA was associated with progressive loss of renal DDAH activity. However, loss of renal clearance and falls in hepatic DDAH activity in HD-PAN did not have additive effects on plasma ADMA.


Asunto(s)
Arginina/análogos & derivados , Arginina/sangre , Fallo Renal Crónico/sangre , Puromicina Aminonucleósido/sangre , Animales , Aorta/patología , Arginasa/sangre , Creatinina/sangre , Relación Dosis-Respuesta a Droga , Corteza Renal/patología , Masculino , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
2.
Am J Physiol Regul Integr Comp Physiol ; 297(6): R1713-23, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812360

RESUMEN

The risk for cardiovascular disease (CVD) increases with advancing age; however, the age at which CVD risk increases significantly is delayed by more than a decade in women compared with men. This cardioprotection, which women experience until menopause, is presumably due to the presence of ovarian hormones, in particular, estrogen. The purpose of this study was to determine how age and ovarian hormones affect flow-induced vasodilation in the coronary resistance vasculature. Coronary arterioles were isolated from young (6 mo), middle-aged (14 mo), and old (24 mo) intact, ovariectomized (OVX), and ovariectomized + estrogen replaced (OVE) female Fischer-344 rats to assess flow-induced vasodilation. Advancing age impaired flow-induced dilation of coronary arterioles (young: 50 +/- 4 vs. old: 34 +/- 6; % relaxation). Ovariectomy reduced flow-induced dilation in arterioles from young females, and estrogen replacement restored vasodilation to flow. In aged females, flow-induced vasodilation of arterioles was unaltered by OVX; however, estrogen replacement improved flow-induced dilation by approximately 160%. The contribution of nitric oxide (NO) to flow-induced dilation, assessed by nitric oxide synthase (NOS) inhibition with N(G)-nitro-l-arginine methyl ester (l-NAME), declined with age. l-NAME did not alter flow-induced vasodilation in arterioles from OVX rats, regardless of age. In contrast, l-NAME reduced flow-induced vasodilation of arterioles from estrogen-replaced rats at all ages. These findings indicate that the age-induced decline of flow-induced, NO-mediated dilation in coronary arterioles of female rats is related, in part, to a loss of ovarian estrogen, and estrogen supplementation can improve flow-induced dilation, even at an advanced age.


Asunto(s)
Envejecimiento , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Estradiol/administración & dosificación , Terapia de Reemplazo de Estrógeno , Ovariectomía , Vasodilatación/efectos de los fármacos , Factores de Edad , Animales , Arteriolas/efectos de los fármacos , Vasos Coronarios/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Implantes de Medicamentos , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Hidrazinas/farmacología , Indometacina/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA