Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 242: 119950, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348422

RESUMEN

Worldwide, water quality managers target a clear, macrophyte-dominated state over a turbid, phytoplankton-dominated state in shallow lakes. The competition mechanisms underlying these ecological states were explored in the 1990s, but the concept of critical turbidity seems neglected in contemporary water quality models. In particular, a simple mechanistic model of alternative stable states in shallow lakes accounting for resource competition mechanisms and critical turbidity is lacking. To this end, we combined Scheffer's theory on critical turbidity with insights from nutrient and light competition theory founded by Tilman, Huisman and Weissing. This resulted in a novel graphical and mathematical model, GPLake-M, that is relatively simple and mechanistically understandable and yet captures the essential mechanisms leading to alternative stable states in shallow lakes. The process-based PCLake model was used to parameterize the model parameters and to test GPLake-M using a pattern-oriented strategy. GPLake-M's application range and position in the model spectrum are discussed. We believe that our results support the fundamental understanding of regime shifts in shallow lakes and provide a starting point for further mechanistic and management-focused explorations and model development. Furthermore, the concept of critical turbidity and the relation between light-limited submerged macrophytes and nutrient-limited phytoplankton might provide a new focus for empirical aquatic ecological research and water quality monitoring programs.


Asunto(s)
Ecosistema , Lagos , Fitoplancton , Modelos Teóricos , Calidad del Agua , Eutrofización , Fósforo/análisis
2.
Glob Ecol Conserv ; 23: e01145, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32835033

RESUMEN

Wild vertebrate populations all over the globe are in decline, with poaching being the second-most-important cause. The high poaching rate of rhinoceros may drive these species into extinction within the coming decades. Some stakeholders argue to lift the ban on international rhino horn trade to potentially benefit rhino conservation, as current interventions appear to be insufficient. We reviewed scientific and grey literature to scrutinize the validity of reasoning behind the potential benefit of legal horn trade for wild rhino populations. We identified four mechanisms through which legal trade would impact wild rhino populations, of which only the increased revenue for rhino farmers could potentially benefit rhino conservation. Conversely, the global demand for rhino horn is likely to increase to a level that cannot be met solely by legal supply. Moreover, corruption is omnipresent in countries along the trade routes, which has the potential to negatively affect rhino conservation. Finally, programmes aimed at reducing rhino horn demand will be counteracted through trade legalization by removing the stigma on consuming rhino horn. Combining these insights and comparing them with criteria for sustainable wildlife farming, we conclude that legalizing rhino horn trade will likely negatively impact the remaining wild rhino populations. To preserve rhino species, we suggest to prioritize reducing corruption within rhino horn trade, increasing the rhino population within well-protected 'safe havens' and implementing educational programmes and law enforcement targeted at rhino horn consumers.

3.
Water Res ; 119: 276-287, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28477543

RESUMEN

Ongoing eutrophication frequently causes toxic phytoplankton blooms. This induces huge worldwide challenges for drinking water quality, food security and public health. Of crucial importance in avoiding and reducing blooms is to determine the maximum nutrient load ecosystems can absorb, while remaining in a good ecological state. These so called critical nutrient loads for lakes depend on the shape of the load-response curve. Due to spatial variation within lakes, load-response curves and therefore critical nutrient loads could vary throughout the lake. In this study we determine spatial patterns in critical nutrient loads for Lake Taihu (China) with a novel modelling approach called Spatial Ecosystem Bifurcation Analysis (SEBA). SEBA evaluates the impact of the lake's total external nutrient load on the local lake dynamics, resulting in a map of critical nutrient loads for different locations throughout the lake. Our analysis shows that the largest part of Lake Taihu follows a nonlinear load-response curve without hysteresis. The corresponding critical nutrient loads vary within the lake and depend on management goals, i.e. the maximum allowable chlorophyll concentration. According to our model, total nutrient loads need to be more than halved to reach chlorophyll-a concentrations of 30-40 µg L-1 in most sections of the lake. To prevent phytoplankton blooms with 20 µg L-1 chlorophyll-a throughout Lake Taihu, both phosphorus and nitrogen loads need a nearly 90% reduction. We conclude that our approach is of great value to determine critical nutrient loads of lake ecosystems such as Taihu and likely of spatially heterogeneous ecosystems in general.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Fitoplancton , China , Lagos , Fósforo
4.
Environ Manage ; 59(4): 619-634, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28044182

RESUMEN

Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo-to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Hydrocharitaceae/crecimiento & desarrollo , Lagos/química , Modelos Teóricos , Fitoplancton/crecimiento & desarrollo , Biomasa , Fósforo/análisis
5.
Ecology ; 95(6): 1485-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039214

RESUMEN

The current changes in our climate will likely have far-reaching consequences for aquatic ecosystems. These changes in the climate, however, do not act alone, and are often accompanied by additional stressors such as eutrophication. Both global warming and eutrophication have been shown to affect the timing and magnitude of phytoplankton blooms. Little is known about the combined effects of rising temperatures and eutrophication on the stoichiometry of entire phytoplankton communities. We exposed a natural phytoplankton spring community to different warming and phosphorus-loading scenarios using a full-factorial design. Our results demonstrate that rising temperatures promote the growth rate of an entire phytoplankton community. Furthermore, both rising temperatures and phosphorus loading stimulated the maximum biomass built up by the phytoplankton community. Rising temperatures led to higher carbon: nutrient stoichiometry of the phytoplankton community under phosphorus-limited conditions. Such a shift towards higher carbon: nutrient ratios, in combination with a higher biomass buildup, suggests a temperature-driven increase in nutrient use efficiency, the phytoplankton community. Importantly, with higher carbon: nutrient stoichiometry, phytoplankton is generally of poorer nutritional value for zooplankton. Thus, although warming may result in higher phytoplankton biomass, this may be accompanied by a stoichiometric mismatch between phytoplankton and their grazers, with possible consequences for the entire aquatic food web.


Asunto(s)
Cambio Climático , Ecosistema , Eutrofización , Fitoplancton/fisiología , Animales , Calor , Fósforo , Dinámica Poblacional , Factores de Tiempo
6.
Environ Manage ; 42(6): 1002-16, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18427883

RESUMEN

Many lakes have experienced a transition from a clear into a turbid state without macrophyte growth due to eutrophication. There are several measures by which nitrogen (N) and phosphorus (P) concentrations in the surface water can be reduced. We used the shallow lake model PCLake to evaluate the effects of three measures (reducing external nutrient loading, increasing relative marsh area, and increasing exchange rate between open water and marsh) on water quality improvement. Furthermore, the contribution of different retention processes was calculated. Settling and burial contributed more to nutrient retention than denitrification. The model runs for a typical shallow lake in The Netherlands showed that after increasing relative marsh area to 50%, total phosphorous (TP) concentration in the surface water was lower than the Maximum Admissible Risk (MAR, a Dutch government water quality standard) level, in contrast to total nitrogen (TN) concentration. The MAR levels could also be achieved by reducing N and P load. However, reduction of nutrient concentrations to MAR levels did not result in a clear lake state with submerged vegetation. Only a combination of a more drastic reduction of the present nutrient loading, in combination with a relatively large marsh cover (approximately 50%) would lead to such a clear state. We therefore concluded that littoral marsh areas can make a small but significant contribution to lake recovery.


Asunto(s)
Eutrofización , Modelos Biológicos , Nitrógeno/análisis , Fósforo/análisis , Contaminantes del Agua/análisis , Abastecimiento de Agua/normas , Animales , Ecosistema , Monitoreo del Ambiente , Agua Dulce/análisis , Agua Dulce/química , Sedimentos Geológicos/química , Nefelometría y Turbidimetría , Países Bajos , Nitrógeno/efectos adversos , Fósforo/efectos adversos , Desarrollo de la Planta , Contaminantes del Agua/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA