Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 16(4): e1008407, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32240278

RESUMEN

Influenza A viruses are human pathogens with limited therapeutic options. Therefore, it is crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. Here we show that gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that preferentially inhibits nuclear export of a subset of viral and cellular mRNAs without altering bulk cellular mRNA export. These findings underscore specific nuclear export requirements for viral mRNAs and phenocopy down-regulation of the mRNA export factor UAP56. This RNA export inhibitor impaired replication of diverse influenza A virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus.


Asunto(s)
Transporte Activo de Núcleo Celular/efectos de los fármacos , Antivirales/farmacología , Núcleo Celular/virología , Virus de la Influenza A/metabolismo , Gripe Humana/virología , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Virus de la Influenza A/genética , ARN Mensajero/genética , ARN Viral/genética , Replicación Viral/efectos de los fármacos
2.
J Appl Physiol (1985) ; 106(2): 729-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19057002

RESUMEN

High pressure, which induces central nervous system (CNS) dysfunction (high-pressure neurological syndrome) depresses synaptic transmission at all synapses examined to date. Several lines of evidence indicate an inhibitory effect of pressure on Ca(2+) entry into the presynaptic terminal. In the present work we studied for the first time the effect of pressure on the cerebellar climbing fiber (CF) synaptic responses. Pressure modulation of cerebellar synaptic plasticity was tested in both the CF and parallel fiber (PF) pathways using paired-pulse protocols. CF synapses, which normally operate at a high baseline release probability, demonstrate paired-pulse depression (PPD). High pressure reduced CF synaptic responses at 5.1 and 10.1 MPa but did not affect its PPD. High extracellular Ca(2+) concentration ([Ca(2+)](o)) could not antagonize the effect of pressure on the CF response, whereas low [Ca(2+)](o), in contrast to pressure, decreased both the response amplitude and the observed PPD. PF synapses, which usually operate at low release probability, exhibit paired-pulse facilitation (PPF). Pressure increased PF PPF at all interstimulus intervals (ISIs) tested (20-200 ms). Several Ca(2+) channel blockers as well as low [Ca(2+)](o) could mimic the effect of pressure on the PF response but significantly increased the PPF only at the 20-ms ISI. These results, together with previous data, show that the CF synapse is relatively resistant to pressure. The lack of pressure effect on CF PPD is surprising and may suggest that the PPD is not directly linked to synaptic depletion, as generally suggested. The increase in PPF of the PF at pressure, which is mimicked by Ca(2+) channel blockers or low [Ca(2+)](o), further supports pressure involvement in synaptic release mechanism(s). These results also indicate that pressure effects may be selective for various types of synapses in the CNS.


Asunto(s)
Cerebelo/metabolismo , Oxigenoterapia Hiperbárica , Fibras Nerviosas/metabolismo , Plasticidad Neuronal , Transmisión Sináptica , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Cerebelo/citología , Cerebelo/efectos de los fármacos , Dendritas/metabolismo , Estimulación Eléctrica , Cobayas , Técnicas In Vitro , Masculino , Fibras Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Presión , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA