Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Ethnopharmacol ; 321: 117506, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012976

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hancornia speciosa Gomes is a fruit and medicinal species used for treating infectious diseases of the genitourinary system. However, its mechanism of action against microbes is still not fully understood. Infections in the genitourinary system caused by Candida spp. are associated with its fungal resistance and pathogenicity. New plant-derived compounds are an alternative to fight these Candida infections. AIM OF THE STUDY: The objective of this study was to evaluate the anti-Candida effects of extracts of the stem bark of H. speciosa. This research investigated the chemical composition of sulfuric ether (EEHS) and methanolic (MEHS) extracts, their drug-modifying action on fluconazole, and their anti-virulence action on the morphological transition of Candida species. MATERIALS AND METHODS: The extracts (EEHS and MEHS) of the stem bark of H. speciosa were chemically characterized via qualitative phytochemical screening and by liquid chromatography coupled with mass spectrometry (UPLC-MS-ESI-QTOF). The extracts were evaluated regarding their antifungal effects and fluconazole-modifying activity against Candida albicans, Candida krusei, and Candida tropicalis using the broth microdilution method. Additionally, the study evaluated the inhibition of fungal virulence in Candida species through morphological transition assays. RESULTS: The phytochemical screening revealed the presence of anthocyanidins, anthocyanins, aurones, catechins, chalcones, flavones, flavonols, flavanones, leucoanthocyanidins, tannins (condensed and pyrogallic), and xanthones in both extracts of the stem bark of H. speciosa. The UPLC-MS-ESI-QTOF analysis identified the same compounds in both extracts, predominating phenolic compounds. Some compounds were first time recorded in this species: gluconic acid, cinchonain IIb, cinchonain Ib isomer, and lariciresinol hexoside isomers. Most of the intrinsic antifungal activity was observed for the MEHS against C. krusei (IC50: 58.41 µg/mL). At subinhibitory concentrations (MC/8), the EEHS enhanced the action of fluconazole against all Candida strains. The MEHS exhibited greater efficacy than fluconazole inhibiting C. krusei growth. The EEHS completely inhibited hyphae appearance and reduced pseudohyphae formation in C. albicans. CONCLUSION: The stem bark of H. speciosa is a rich source of bioactive compounds, especially phenolic. Phenolic compounds can have important roles in fighting infectious diseases of the genitourinary system, such as candidiasis. The extracts of H. speciosa improved the action of the drug fluconazole against Candida species, inhibited hyphae appearance, and reduced pseudohyphae formation. The results of this study can support the development of new therapeutics against resistant strains of Candida.


Asunto(s)
Apocynaceae , Candidiasis , Enfermedades Transmisibles , Antifúngicos/farmacología , Antifúngicos/química , Candida , Fluconazol/farmacología , Virulencia , Cromatografía Liquida , Apocynaceae/química , Corteza de la Planta/química , Antocianinas/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Candida albicans , Fitoquímicos/análisis , Pruebas de Sensibilidad Microbiana
2.
Molecules ; 27(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807377

RESUMEN

Species of the genus Miconia are used in traditional medicine for the treatment of diseases, such as pain, throat infections, fever, and cold, and they used as depuratives, diuretics, and sedatives. This work reviewed studies carried out with Miconia species, highlighting its ethnomedicinal uses and pharmacological and phytochemical potential. This information was collected in the main platforms of scientific research (PubMed, Scopus, and Web of Science). Our findings show that some of the traditional uses of Miconia are corroborated by biological and/or pharmacological assays, which demonstrated, among other properties, anti-inflammatory, analgesic, antimutagenic, antiparasitic, antioxidant, cytotoxic, and antimicrobial activities. A total of 148 chemical compounds were identified in Miconia species, with phenolic compounds being the main constituents found in the species of this genus. Such phytochemical investigations have demonstrated the potential of species belonging to this genus as a source of bioactive substances, thus reinforcing their medicinal and pharmacological importance.


Asunto(s)
Melastomataceae , Etnofarmacología , Medicina Tradicional , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología
3.
Molecules ; 27(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35408565

RESUMEN

Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 µg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Lamiaceae , Leishmaniasis Mucocutánea , Aceites Volátiles , Trypanosoma cruzi , Animales , Antioxidantes/farmacología , Antiprotozoarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Mamíferos , Aceites Volátiles/farmacología
4.
Pharmaceutics ; 14(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35456532

RESUMEN

(1) Background: Candida is a genus of yeasts with notable pathogenicity and significant ability to develop antimicrobial resistance. Gossypium hirsutum L., a medicinal plant that is traditionally used due to its antimicrobial properties, has demonstrated significant antifungal activity. Therefore, this study investigated the chemical composition and anti-Candida effects of aqueous (AELG) and hydroethanolic (HELG) extracts obtained from the leaves of this plant. (2) Methods: The extracts were chemically characterized by UPLC-QTOF-MS/MS, and their anti-Candida activities were investigated by analyzing cell viability, biofilm production, morphological transition, and enhancement of antifungal resistance. (3) Results: The UPLC-QTOF-MS/MS analysis revealed the presence of twenty-one compounds in both AELG and HELG, highlighting the predominance of flavonoids. The combination of the extracts with fluconazole significantly reduced its IC50 values against Candida albicans INCQS 40006, Candida tropicalis INCQS 40042, and C. tropicalis URM 4262 strains, indicating enhanced antifungal activity. About biofilm production, significant inhibition was observed only for the AELG-treated C. tropicalis URM 4262 strain in comparison with the untreated control. Accordingly, this extract showed more significant inhibitory effects on the morphological transition of the INCQS 40006 and URM 4387 strains of C. albicans (4) Conclusions: Gossypium hirsutum L. presents promising antifungal effects, that may be potentially linked to the combined activity of chemical constituents identified in its extracts.

5.
3 Biotech ; 12(3): 61, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35186658

RESUMEN

Spondias mombin is used in the folk medicine for the treatment of diarrhea and dysentery, indicating that extracts obtained from this species may present pharmacological activities against pathogenic microorganisms. The purpose of this work was to investigate the chemical composition and evaluate the antimicrobial activity of extracts obtained from the leaves (aqueous) and bark (hydroethanolic) of S. mombin both as single treatments and in combination with conventional drugs. Following a qualitative chemical prospection, the extracts were analyzed by HPLC-DAD. The antimicrobial activities were evaluated by microdilution. The combined activity of drugs and extracts was verified by adding a subinhibitory concentration of the extract in the presence of variable drug concentrations. The Minimum Fungicidal Concentration (MFC) was determined by a subculture of the microdilution test, while the effect of the in vitro treatments on morphological transition was analyzed by subculture in moist chambers. While the qualitative analysis detected the presence of phenols and flavonoids, the HPLC analysis identified quercetin, caffeic acid, and catechin as major components in the leaf extract, whereas kaempferol and quercetin were found as major compounds in the bark extract. The extracts showed effective antibacterial activities only against the Gram-negative strains. With regard to the combined activity, the leaf extract potentiated the action of gentamicin and imipenem (against Staphylococcus aureus), while the bark extract potentiated the effect of norfloxacin (against S. aureus), imipenem (against Escherichia coli), and norfloxacin (against Pseudomonas aeruginosa). A more significant antifungal (fungistatic) effect was achieved with the bark extract (even though at high concentrations), which further enhanced the activity of fluconazole. The extracts also inhibited the emission of filaments by Candida albicans and Candida tropicalis. Together, these findings suggest that that the extract constituents may act by favoring the permeability of microbial cells to conventional drugs, as well as by affecting virulence mechanisms in Candida strains.

6.
Molecules ; 28(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36615503

RESUMEN

This study aimed to identify the chemical composition of the Spondias tuberosa aqueous leaf and root extracts (EALST and EARST) and to evaluate their effect, comparatively, against opportunistic pathogenic fungi. Ultra-Performance Liquid Chromatography Coupled to a Quadrupole/Time of Flight System (UPLC-MS-ESI-QTOF) was employed for chemical analysis. Candida albicans and C. tropicalis standard strains and clinical isolates were used (CA INCQS 40006, CT INCQS 40042, CA URM 5974, and CT URM 4262). The 50% Inhibitory Concentration for the fungal population (IC50) was determined for both the intrinsic action of the extracts and the extract/fluconazole (FCZ) associations. The determination of the Minimum Fungicidal Concentration (MFC) and the verification of effects over fungal morphological transitions were performed by subculture in Petri dishes and humid chambers, respectively, both based on micro-dilution. UPLC-MS-ESI-QTOF analysis revealed the presence of phenolic and flavonoid compounds. The association of the extracts with fluconazole, resulted in IC50 values from 2.62 µg/mL to 308.96 µg/mL. The MFC of the extracts was ≥16,384 µg/mL for all tested strains, while fluconazole obtained an MFC of 8192 µg/mL against C. albicans strains. A reduction in MFC against CA URM 5974 (EALST: 2048 µg/mL and EARST: 1024 µg/mL) occurred in the extract/fluconazole association.


Asunto(s)
Antifúngicos , Fluconazol , Antifúngicos/química , Fluconazol/farmacología , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Candida albicans , Candida tropicalis , Pruebas de Sensibilidad Microbiana
7.
J Ethnopharmacol ; 279: 114363, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34216726

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Malvaceae family, an important group of plants that have the Gossypium (cotton) genus has been used in folk medicine to treat microbial diseases and symptoms. AIMS OF THE STUDY: This article aims to understand its ethnobotany expression in communities and scientific elucidation of antimicrobial activities of this genus through literature review. MATERIALS AND METHODS: The bibliographic survey was carried out from 1999 to 2019 with keywords combinations such as "Gossypium + ethnobotanical", " Gossypium + medicinal ", "Gossypium + the biological activity" in scientific databases as Pubmed, Scopus, Web of Science, DOAJ, Scielo, Bireme. RESULTS: After data analysis, we found that the Gossypium genus, specifically Gossypium hirsutum, G. barbadense, G. herbaceum, G. arboreum are the species most cited in the treatment of microbial diseases and symptoms in communities all over the world. In light of scientific elucidation of biological activities, the Gossypium genus has been used to treat protozoal, bacterial, fungal, and viral diseases. CONCLUSIONS: The review demonstrated that the Gossypium genus is a promising source of biological activities against microbial diseases, especially in the treatment of protozoal diseases like malaria.


Asunto(s)
Antiinfecciosos/farmacología , Gossypium/química , Preparaciones de Plantas/farmacología , Animales , Antiinfecciosos/aislamiento & purificación , Etnobotánica , Etnofarmacología , Gossypium/clasificación , Humanos , Medicina Tradicional/métodos , Preparaciones de Plantas/aislamiento & purificación , Infecciones por Protozoos/tratamiento farmacológico
8.
Phytother Res ; 35(5): 2445-2476, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33325585

RESUMEN

Astragalus L. is widely distributed throughout the temperate regions of Europe, Asia, and North America. The genus is widely used in folk medicine and in dietary supplements, as well as in cosmetics, teas, coffee, vegetable gums, and as forage for animals. The major phytoconstituents of Astragalus species with beneficial properties are saponins, flavonoids, and polysaccharides. Astragalus extracts and their isolated components exhibited promising in vitro and in vivo biological activities, including antiaging, antiinfective, cytoprotective, antiinflammatory, antioxidant, antitumor, antidiabesity, and immune-enhancing properties. Considering their proven therapeutic potential, the aim of this work is to give a comprehensive summary of the Astragalus spp. and their active components, in an attempt to provide new insight for further clinical development of these xenobiotics. This is the first review that briefly describes their ethnopharmacology, composition, biological, and toxicological properties.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32595597

RESUMEN

Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants' bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants' biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.


Asunto(s)
Anacardium/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Etnofarmacología , Extractos Vegetales/farmacología , Animales , Humanos
10.
Sci Total Environ ; 703: 134779, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31710846

RESUMEN

The search for natural substances such as plant extracts with antimicrobial properties has considerably increased, given that biofilms constitute a barrier against antifungal therapy, where these can be formed on any surface, such as acrylic resin prosthesis. The objective of this study was to identify the chemical composition of the Persea americana Mill. leaf ethanol extract (EEFPa) using the UPLC-QTOF-MS/MS technique, to verify its antifungal activity through a sensitivity test according to the conditions described in the documents in M27-A3 (CLSI, 2008) and M60 (CLSI, 2017), to induce biofilm formation in acrylic resin discs and quantify their formation using tetrazolium salt reduction (MTT), as well as to treat these with the extract and fluconazole. Ten of the twelve compounds present in the extract were identified. In the sensitivity test the lowest minimum inhibitory concentration observed was 512 µg/mL, while fluconazole concentrations ranged from 64 to 1 µg/mL. During biofilm induction, all the isolates were able to form biofilms within 48 h. During biofilm treatment, the extract was less effective at biofilm reduction than Fluconazole. The EEFPa showed significant antifungal activity against some of the strains in this study, however the extract showed lower effect when compared to fluconazole against the biofilm formation.


Asunto(s)
Persea , Resinas Acrílicas , Antifúngicos , Biopelículas , Productos Biológicos , Candida , Pruebas de Sensibilidad Microbiana , Hojas de la Planta , Espectrometría de Masas en Tándem , Árboles
11.
Artículo en Inglés | MEDLINE | ID: mdl-31174689

RESUMEN

Phytochemical prospecting was performed by HPLC-DAD. The Inhibitory Concentration of 50% of mortality the microorganisms (IC50) was determined and a cell viability curve was obtained. Minimum Fungicidal Concentration (MFC) was determined by subculture in Sabourad Dextrose Agar. The effect of the combination extract/fluconazole was verified by microdilution, with the extracts in subinhibitory concentrations (MFC/16). Caffeic acid was the major compound of both extracts, representing 6.08% in the aqueous extract and 7.62% in the ethanolic extract. The extracts showed a fungistatic effect (MFC ≥ 16,384 µg/mL). The IC50 results demonstrated that the combination of the extracts with fluconazole were more significant than the products tested alone, with values from 4.9 to 34.8 µg/mL for the ethanolic extract/fluconazole and 5 to 84.7 µg/mL for the aqueous extract/fluconazole. The potentiating effect of fluconazole action was observed against C. albicans and C. tropicalis. In C. krusei the aqueous extract had an antagonistic effect.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antifúngicos/química , Ácidos Cafeicos/farmacología , Descubrimiento de Drogas , Sinergismo Farmacológico , Fluconazol/farmacología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plantas Medicinales/química
12.
Molecules ; 23(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388858

RESUMEN

Tagetes (marigold) is native to America, and its cultivation currently extends to other countries in Africa, Asia, and Europe. Many species of this genus, such as T. minuta, T. erecta, T. patula, and T. tenuifolia, are cultivated as ornamental plants and studied for their medicinal properties on the basis of their use in folk medicine. Different parts of the Tagetes species are used as remedies to treat various health problems, including dental, stomach, intestinal, emotional, and nervous disorders, as well as muscular pain, across the world. Furthermore, these plants are studied in the field of agriculture for their fungicidal, bactericidal, and insecticidal activities. The phytochemical composition of the extracts of different Tagetes species parts are reported in this work. These compounds exhibit antioxidant, antiinflammatory, and enzyme inhibitory properties. Cultivation and the factors affecting the chemical composition of Tagetes species are also covered. In the current work, available literature on Tagetes species in traditional medicine, their application as a food preservative, and their antimicrobial activities are reviewed.


Asunto(s)
Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tagetes/química , Agricultura , Antiinfecciosos/química , Antiinfecciosos/farmacología , Aditivos Alimentarios , Conservantes de Alimentos , Medicina Tradicional , Fitoquímicos/química , Fitoquímicos/farmacología
13.
Microbiol Res ; 215: 76-88, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30172312

RESUMEN

Matricaria is a widespread genus of flowering plants of the family Asteraceae that grow in temperate regions of Europe, Asia, America and Africa. Some of the species are also naturalized in Australia. Some species of this genus such as Chamomiles are recognized medicinal plants and cultivated in several countries for commercial purposes: to obtain its blue essence, as herbal tea, and for pharmaceutical or cosmeceutical uses. The phytochemical composition of Matricaria spp. includes volatile terpenoids (e.g., α-bisabolol, bisabolol oxide A and B, ß-trans-farnesene and chamazulene), sesquiterpene lactones such as matricin, and phenolic compounds (flavonoids, coumarins and phenolic acids). Their essential oil is obtained from the fresh or dried inflorescences by steam distillation, and additionally cohobation of the remaining water. The volatile composition of the essential oil, especially the content of the valuable components α-bisabolol and chamazulene, depends on the plant part, origin and quality of the source, genetic, and environmental factors. Moreover, other parameters, such as season of harvest and methods of extraction, can affect the extraction yield of the essential oils/extracts, their composition and, therefore, their bioactivity. Due to the importance of this genus and particularly M. recutita (M. chamomilla), this review focus on its cultivation, factor affecting essential oils' composition and their role in traditional medicine, as antibacterial agents and finally as food preservatives.


Asunto(s)
Antiinfecciosos/química , Matricaria/química , Aceites Volátiles/química , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales/química , Antiinfecciosos/farmacología , Azulenos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Cumarinas/metabolismo , Granjas , Flavonoides/química , Alimentos , Industria de Alimentos , Conservantes de Alimentos , Hidroxibenzoatos/química , Lactonas/farmacología , Sesquiterpenos Monocíclicos , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/química , Estaciones del Año , Sesquiterpenos/farmacología , Sesquiterpenos de Guayano
14.
Food Chem Toxicol ; 119: 122-132, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29751075

RESUMEN

Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 µg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 µg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus.


Asunto(s)
Antifúngicos/farmacología , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Extractos Vegetales/farmacología , Antifúngicos/química , Candida/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/química , Psidium/química
15.
Phytother Res ; 32(9): 1653-1663, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29749084

RESUMEN

The genus Echinacea consists of 11 taxa of herbaceous and perennial flowering plants. In particular, Echinacea purpurea (L.) Moench is widely cultivated all over the United States, Canada, and in Europe, exclusively in Germany, for its beauty and reported medicinal properties. Echinacea extracts have been used traditionally as wound healing to improve the immune system and to treat respiratory symptoms caused by bacterial infections. Echinacea extracts have demonstrated antioxidant and antimicrobial activities, and to be safe. This survey aims at reviewing the medicinal properties of Echinacea species, their cultivation, chemical composition, and the potential uses of these plants as antioxidant and antibacterial agents in foods and in a clinical context. Moreover, the factors affecting the chemical composition of Echinacea spp. are also covered.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Echinacea/química , Extractos Vegetales/farmacología , Conservantes de Alimentos/farmacología , Humanos , Medicina Tradicional , Aceites Volátiles/química , Fitoterapia , Plantas Medicinales/química
16.
Food Chem ; 261: 233-239, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29739588

RESUMEN

The development of fungal resistance to antifungal drugs has been worsening over the years and as a result research on new antifungal agents derived from plants has intensified. Eugenia uniflora L. (pitanga) has been studied for its various biological actions. In this study the chemical composition and antifungal effects of the E. uniflora essential oil (EULEO) were investigated against Candida albicans (CA), Candida krusei (CK) and Candida tropicalis (CT) standard strains. The essential oil obtained through hydro-distillation was analyzed by gas chromatography coupled to mass spectrometry (GC-MS). To determine the IC50 of the oil, the cellular viability curve and the inhibitory effects were measured by means of the oil's association with Fluconazole in a broth microdilution assay with spectrophotometric readings. The Minimum Fungicidal Concentration (MFC) was determined by solid medium subculture with the aid of a guide plate while the assays used to verify morphological changes emerging from the action of the fractions were performed in microculture chambers at concentrations based on the microdilution. Two major oil constituents stand out from the chemical analysis: selina-1,3,7(11)-trien-8-one (36.37%) and selina-1,3,7(11)-trien-8-one epoxide (27.32%). The concentration that reduced microorganismal growth was ≥8,192 µg/mL while the IC50 varied, this being between 1892.47 and 12491.80 µg/mL (oil), 10.07 - 80.78 µg/mL (fluconazole) and 18.53 - 295.60 µg/mL (fluconazole + oil). The combined activity (fluconazole + oil) resulted in indifference and antagonism. A MFC of the oil in association with fluconazole was recorded at the concentration of 8,192 µg/mL against CA and CK. The oil caused the inhibition of CA and CT morphological transition. In view of the results obtained, additional research is needed to elucidate the activity of the E. uniflora oil over genetic and biochemical processes regarding its effect on Candida spp. virulence.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Eugenia/química , Aceites Volátiles/farmacología , Antifúngicos/química , Candida/patogenicidad , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Cromatografía de Gases y Espectrometría de Masas , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites de Plantas/química , Aceites de Plantas/farmacología
17.
Microb Pathog ; 107: 280-286, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28385578

RESUMEN

The association of herbal products with standard antimicrobial drugs has recently gained more attention as a hope to overcome infectious diseases caused by multidrug-resistant microorganisms. Here, we investigated for the first time the antimicrobial (antifungal and antibacterial) activity of ethanolic and aqueous extracts of R. echinus against multiresistant strains of bacteria (E. coli, P. aeruginosa and S. aureus) and fungi (C. albicans, C. krusei and C. tropicalis), as well as potential to enhance the activity of antibiotics drugs. In addition, both extract were chemically characterized and their toxicity was assessed in Artemia salina. Our results demonstrate that aqueous extract of R. echinus caused a significant increase in the activity of antibiotics gentamicin and imipenem, while the ethanolic extract strongly enhanced the antibiotic activity of gentamicin, amikacin, imipenem and ciprofloxacin against P. aeruginosa. However, neither the ethanolic nor the aqueous extracts significantly affect the antibiotic activity of the drugs when tested against S. aureus. Phytochemical analysis of the extracts indicated ellagic acid, caffeic acid and chlorogenic acid as the major components which can be at least in part responsible for the enhanced activity of antibiotics. None of the extracts showed toxicity in A. salina even at the highest concentration tested (1000 µg/mL). All together, our results suggest that the leaf extract of R. echinus can be an effective source of modulating agents.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Extractos Vegetales/farmacología , Tracheophyta/química , Animales , Antibacterianos/química , Antifúngicos/química , Artemia/efectos de los fármacos , Bacterias/efectos de los fármacos , Candida/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Hojas de la Planta/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA