RESUMEN
The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them. Here, we introduce an integrative paradigm to model the conformational states of multidomain proteins. As a model system, we use the first two tandem PDZ domains of postsynaptic density protein 95. First, we utilize available sequence information collected from genomic databases to identify potential amino acid interactions in the PDZ1-2 tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1-2 tandem conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1-2 tandem. Finally, we implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of protein dynamics in biological function.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proyectos de Investigación , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Conformación Molecular , Aminoácidos , Conformación ProteicaRESUMEN
The analysis of amino acid coevolution has emerged as a practical method for protein structural modeling by providing structural contact information from alignments of amino acid sequences. In parallel, chemical cross-linking/mass spectrometry (XLMS) has gained attention as a universally applicable method for obtaining low-resolution distance constraints to model the quaternary arrangements of proteins, and more recently even protein tertiary structures. Here, we show that the structural information obtained by XLMS and coevolutionary analysis are effectively complementary: the distance constraints obtained by each method are almost exclusively associated with non-coincident pairs of residues, and modeling results obtained by the combination of both sets are improved relative to considering the same total number of constraints of a single type. The structural rationale behind the complementarity of the distance constraints is discussed and illustrated for a representative set of proteins with different sizes and folds.