Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 10: 903953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693943

RESUMEN

Glycosylation is a ubiquitous and universal cellular process in all domains of life. In eukaryotes, many glycosylation pathways occur simultaneously onto proteins and lipids for generating a complex diversity of glycan structures. In humans, severe genetic diseases called Congenital Disorders of Glycosylation (CDG), resulting from glycosylation defects, demonstrate the functional relevance of these processes. No real cure exists so far, but oral administration of specific monosaccharides to bypass the metabolic defects has been used in few CDG, then constituting the simplest and safest treatments. Oral D-Galactose (Gal) therapy was seen as a promising tailored treatment for specific CDG and peculiarly for TMEM165-CDG patients. TMEM165 deficiency not only affects the N-glycosylation process but all the other Golgi-related glycosylation types, then contributing to the singularity of this defect. Our previous results established a link between TMEM165 deficiency and altered Golgi manganese (Mn2+) homeostasis. Besides the fascinating power of MnCl2 supplementation to rescue N-glycosylation in TMEM165-deficient cells, D-Gal supplementation has also been shown to be promising in suppressing the observed N-glycosylation defects. Its effect on the other Golgi glycosylation types, most especially O-glycosylation and glycosaminoglycan (GAG) synthesis, was however unknown. In the present study, we demonstrate the differential impact of D-Gal or MnCl2 supplementation effects on the Golgi glycosylation defects caused by TMEM165 deficiency. Whereas MnCl2 supplementation unambiguously fully rescues the N- and O-linked as well as GAG glycosylations in TMEM165-deficient cells, D-Gal supplementation only rescues the N-linked glycosylation, without any effects on the other Golgi-related glycosylation types. According to these results, we would recommend the use of MnCl2 for TMEM165-CDG therapy.

2.
J Inherit Metab Dis ; 43(2): 357-366, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31415112

RESUMEN

TMEM165 is involved in a rare genetic human disease named TMEM165-CDG (congenital disorders of glycosylation). It is Golgi localized, highly conserved through evolution and belongs to the uncharacterized protein family 0016 (UPF0016). The use of isogenic TMEM165 KO HEK cells was crucial in deciphering the function of TMEM165 in Golgi manganese homeostasis. Manganese is a major cofactor of many glycosylation enzymes. Severe Golgi glycosylation defects are observed in TMEM165 Knock Out Human Embryonic Kidney (KO HEK) cells and are rescued by exogenous manganese supplementation. Intriguingly, we demonstrate in this study that the observed Golgi glycosylation defect mainly depends on fetal bovine serum, particularly its manganese level. Our results also demonstrate that iron and/or galactose can modulate the observed glycosylation defects in TMEM165 KO HEK cells. While isogenic cultured cells are widely used to study the impact of gene defects on proteins' glycosylation patterns, these results emphasize the importance of the use of validated fetal bovine serum in glycomics studies.


Asunto(s)
Antiportadores/fisiología , Proteínas de Transporte de Catión/fisiología , Glicosilación/efectos de los fármacos , Manganeso/metabolismo , Albúmina Sérica Bovina/farmacología , Antiportadores/genética , Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Trastornos Congénitos de Glicosilación/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Transporte Iónico
3.
J Clin Endocrinol Metab ; 102(4): 1375-1386, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28323990

RESUMEN

CONTEXT: TMEM165 deficiency is a severe multisystem disease that manifests with metabolic, endocrine, and skeletal involvement. It leads to one type of congenital disorders of glycosylation (CDG), a rapidly growing group of inherited diseases in which the glycosylation process is altered. Patients have decreased galactosylation by serum glycan analysis. There are >100 CDGs, but only specific types are treatable. OBJECTIVE: Galactose has been shown to be beneficial in other CDG types with abnormal galactosylation. The aim of this study was to characterize the effects of galactose supplementation on Golgi glycosylation in TMEM165-depleted HEK293 cells, as well as in 2 patients with TMEM165-CDG and in their cultured skin fibroblast cells. DESIGN AND SETTING: Glycosylation was assessed by mass spectrometry, western blot analysis, and transferrin isoelectrofocusing. PATIENTS AND INTERVENTIONS: Both unrelated patients with TMEM165-CDG with the same deep intronic homozygous mutation (c.792+182G>A) were allocated to receive d-galactose in a daily dose of 1 g/kg. RESULTS: We analyzed N-linked glycans and glycolipids in knockout TMEM165 HEK293 cells, revealing severe hypogalactosylation and GalNAc transfer defects. Although these defects were completely corrected by the addition of Mn2+, we demonstrated that the observed N-glycosylation defect could also be overcome by galactose supplementation. We then demonstrated that oral galactose supplementation in patients with TMEM165-deficient CDG improved biochemical and clinical parameters, including a substantial increase in the negatively charged transferrin isoforms, and a decrease in hypogalactosylated total N-glycan structures, endocrine function, and coagulation parameters. CONCLUSION: To our knowledge, this is the first description of abnormal glycosylation of lipids in the TMEM165 defect and the first report of successful dietary treatment in TMEM165 deficiency. We recommend the use of oral d-galactose therapy in TMEM165-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación/dietoterapia , Trastornos Congénitos de Glicosilación/genética , Galactosa/farmacología , Galactosa/uso terapéutico , Glicosilación/efectos de los fármacos , Proteínas de la Membrana/genética , Adulto , Antiportadores , Proteínas de Transporte de Catión , Niño , Trastornos Congénitos de Glicosilación/patología , Suplementos Dietéticos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Mutación , Resultado del Tratamiento
4.
Biochem J ; 474(9): 1481-1493, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28270545

RESUMEN

TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn2+-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+-induced degradation of TMEM165.


Asunto(s)
Aparato de Golgi/efectos de los fármacos , Lisosomas/efectos de los fármacos , Manganeso/farmacología , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Antiportadores , Western Blotting , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Transporte de Catión , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Glutamatos/genética , Glutamatos/metabolismo , Glicosilación/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Mutación , Proteolisis/efectos de los fármacos
5.
Hum Mol Genet ; 25(8): 1489-500, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27008884

RESUMEN

Congenital disorders of glycosylation (CDG) are severe inherited diseases in which aberrant protein glycosylation is a hallmark. From this genetically and clinically heterogenous group, a significant subgroup due to Golgi homeostasis defects is emerging. We previously identified TMEM165 as a Golgi protein involved in CDG. Extremely conserved in the eukaryotic reign, the molecular mechanism by which TMEM165 deficiencies lead to Golgi glycosylation abnormalities is enigmatic. AsGDT1 is the ortholog of TMEM165 in yeast, both gdt1Δ null mutant yeasts and TMEM165 depleted cells were used. We highlighted that the observed Golgi glycosylation defects due to Gdt1p/TMEM165 deficiency result from Golgi manganese homeostasis defect. We discovered that in both yeasts and mammalian Gdt1p/TMEM165-deficient cells, Mn(2+) supplementation could restore a normal glycosylation. We also showed that the GPP130 Mn(2+) sensitivity was altered in TMEM165 depleted cells. This study not only provides novel insights into the molecular causes of glycosylation defects observed in TMEM165-deficient cells but also suggest that TMEM165 is a key determinant for the regulation of Golgi Mn(2+) homeostasis.


Asunto(s)
Proteínas Fúngicas/genética , Aparato de Golgi/fisiología , Manganeso/farmacología , Proteínas de la Membrana/deficiencia , Mutación , Antiportadores , Proteínas de Transporte de Catión , Trastornos Congénitos de Glicosilación/genética , Proteínas Fúngicas/metabolismo , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Manganeso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Plant J ; 76(1): 61-72, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23802881

RESUMEN

A paradigm regarding rhamnogalacturonans II (RGII) is their strictly conserved structure within a given plant. We developed and employed a fast structural characterization method based on chromatography and mass spectrometry, allowing analysis of RGII side chains from microgram amounts of cell wall. We found that RGII structures are much more diverse than so far described. In chain A of wild-type plants, up to 45% of the l-fucose is substituted by l-galactose, a state that is seemingly uncorrelated with RGII dimerization capacity. This led us to completely reinvestigate RGII structures of the Arabidopsis thaliana fucose-deficient mutant mur1, which provided insights into RGII chain A biosynthesis, and suggested that chain A truncation, rather than l-fucose to l-galactose substitution, is responsible for the mur1 dwarf phenotype. Mass spectrometry data for chain A coupled with NMR analysis revealed a high degree of methyl esterification of its glucuronic acid, providing a plausible explanation for the puzzling RGII antibody recognition. The ß-galacturonic acid of chain A exhibits up to two methyl etherifications in an organ-specific manner. Combined with variation in the length of side chain B, this gives rise to a family of RGII structures instead of the unique structure described up to now. These findings pave the way for studies on the physiological roles of modulation of RGII composition.


Asunto(s)
Arabidopsis/química , Galactosa/química , Pectinas/química , Hojas de la Planta/química , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Pared Celular/metabolismo , Cromatografía Liquida , Fucosa/análisis , Fucosa/metabolismo , Galactosa/análisis , Ácidos Hexurónicos , Monosacáridos/química , Mutación , Especificidad de Órganos , Pectinas/genética , Pectinas/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA