Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 249(6): 1823-1836, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30847571

RESUMEN

MAIN CONCLUSION: The enzymes HaKCS1 and HaKCS2 are expressed in sunflower seeds and contribute to elongation of C18 fatty acids, resulting in the C20-C24 fatty acids in sunflower oil. Most plant fatty acids are produced by plastidial soluble fatty acid synthases that produce fatty acids of up to 18 carbon atoms. However, further acyl chain elongations can take place in the endoplasmic reticulum, catalysed by membrane-bound synthases that act on acyl-CoAs. The condensing enzymes of these complexes are the ketoacyl-CoA synthase (KCSs), responsible for the synthesis of very long chain fatty acids (VLCFAs) and their derivatives in plants, these including waxes and cuticle hydrocarbons, as well as fatty aldehydes. Sunflower seeds accumulate oil that contains around 2-3% of VLCFAs and studies of the fatty acid elongase activity in developing sunflower embryos indicate that two different KCS isoforms drive the synthesis of these fatty acids. Here, two cDNAs encoding distinct KCSs were amplified from RNAs extracted from developing sunflower embryos and named HaKCS1 and HaKCS2. These genes are expressed in developing seeds during the period of oil accumulation and they are clear candidates to condition sunflower oil synthesis. These two KCS cDNAs complement a yeast elongase null mutant and when expressed in yeast, they alter the host's fatty acid profile, proving the encoded KCSs are functional. The structure of these enzymes was modelled and their contribution to the presence of VLCFAs in sunflower oil is discussed based on the results obtained.


Asunto(s)
Acetiltransferasas/metabolismo , Helianthus/enzimología , Modelos Estructurales , Aceite de Girasol/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Acilcoenzima A/metabolismo , Aldehídos/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Complementario/genética , Ácido Graso Sintasas/química , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Helianthus/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Semillas/enzimología , Semillas/genética , Alineación de Secuencia
2.
Planta ; 235(3): 629-39, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22002626

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases are enzymes that control the termination of intraplastidial fatty acid synthesis by hydrolyzing the acyl-ACP complexes. Among the different thioesterase gene families found in plants, the FatA-type fulfills a fundamental role in the export of the C18 fatty acid moieties that will be used to synthesize most plant glycerolipids. A reverse genomic approach has been used to study the FatA thioesterase in seed oil accumulation by screening different mutant collections of Arabidopsis thaliana for FatA knockouts. Two mutants were identified with T-DNA insertions in the promoter region of each of the two copies of FatA present in the Arabidopsis genome, from which a double FatA Arabidopsis mutant was made. The expression of both forms of FatA thioesterases was reduced in this double mutant (fata1 fata2), as was FatA activity. This decrease did not cause any evident morphological changes in the mutant plants, although the partial reduction of this activity affected the oil content and fatty acid composition of the Arabidopsis seeds. Thus, dry mutant seeds had less triacylglycerol content, while other neutral lipids like diacylglycerols were not affected. Furthermore, the metabolic flow of the different glycerolipid species into seed oil in the developing seeds was reduced at different stages of seed formation in the fata1 fata2 line. This diminished metabolic flow induced increases in the proportion of linolenic and erucic fatty acids in the seed oil, in a similar way as previously reported for the wri1 Arabidopsis mutant that accumulates oil poorly. The similarities between these two mutants and the origin of their phenotype are discussed in function of the results.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Tioléster Hidrolasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Grasos/genética , Plantas Modificadas Genéticamente/genética , Semillas/genética , Tioléster Hidrolasas/genética
3.
Plant Physiol Biochem ; 49(1): 82-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21071236

RESUMEN

The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Ácidos Grasos/metabolismo , Macadamia/metabolismo , Nueces/metabolismo , Aceites de Plantas/metabolismo , Tioléster Hidrolasas/metabolismo , Clonación Molecular , Escherichia coli , Macadamia/clasificación , Macadamia/genética , Nueces/química , Nueces/clasificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Tioléster Hidrolasas/química
4.
Phytochemistry ; 71(8-9): 860-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20382402

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.


Asunto(s)
Ricinus communis/enzimología , Tioléster Hidrolasas/metabolismo , Ricinus communis/metabolismo , Aceite de Ricino/análisis , Aceite de Ricino/biosíntesis , Datos de Secuencia Molecular , Estructura Molecular , Análisis de Secuencia de Proteína , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA