Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 20(1): 286, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31200688

RESUMEN

BACKGROUND: McH-lpr/lpr-RA1 mice are a new strain of mice which spontaneously develop destructive arthritis and enthesitis in the ankle. There is no published data that drug treatment has been trialed on these mice. This study examined the effect of the mouse anti-IL-6 receptor antibody, MR16-1, for the treatment of arthritis and enthesitis in McH-lpr/lpr-RA1 mice. METHODS: Male McH-lpr/lpr-RA1 mice were randomly divided into control and treatment groups. MR16-1 was administered from 10 weeks of age for the treatment group. Saline was applied for the control group. The drug was administered once a week, at an initial dose of 2 mg, then maintained at 0.5 mg once per week thereafter. The effects were evaluated by the histopathological synovitis score, in vivo imaging using indocyanine green liposomes, and analysis of the gene expression of inflammatory cytokines. RESULTS: Tissue analyses were carried out at 14, 17 and 20 weeks of age. The synovitis scores of treated groups were significantly lower compared with those of the control group at 14 and 17 weeks of age. The kappa coefficient was 0.77. However, progression of entheseal ossification persisted in the MR16-1 treated group. In vivo imaging using indocyanine green liposomes showed significant decreases in signal intensities of treated groups at week 14, but no significant differences were observed at week 18. Blood serum amyloid A levels in treated groups were significantly lower at 17 weeks of age. The gene expression levels of Tnf and Il17 were also significantly lower in MR16-1 treated groups. CONCLUSIONS: Administration of the anti-IL-6 receptor antibody is effective for the treatment of synovitis and bone destruction of McH-lpr/lpr-RA1 mice. McH-lpr/lpr-RA1 mice may be a suitable experimental model for the development of new treatments for destructive arthritis and enthesitis. IL-6 signal blockade could contribute to the treatment of destructive arthritis, and further studies should be carried out to confirm its potential in the prevention of enthesopathy developed to ossification.


Asunto(s)
Anticuerpos/administración & dosificación , Artritis/tratamiento farmacológico , Entesopatía/tratamiento farmacológico , Receptores de Interleucina-6/antagonistas & inhibidores , Animales , Artritis/inmunología , Artritis/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Entesopatía/inmunología , Entesopatía/patología , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos , Distribución Aleatoria , Receptores de Interleucina-6/inmunología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/inmunología , Membrana Sinovial/patología
2.
Sci Rep ; 7: 45459, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368042

RESUMEN

Systemic delivery of an anti-cancer agent often leads to only a small fraction of the administered dose accumulating in target sites. Delivering anti-cancer agents through the lymphatic network can achieve more efficient drug delivery for the treatment of lymph node metastasis. We show for the first time that polymeric gold nanorods (PAuNRs) can be delivered efficiently from an accessory axillary lymph node to a tumor-containing proper axillary lymph node, enabling effective treatment of lymph node metastasis. In a mouse model of metastasis, lymphatic spread of tumor was inhibited by lymphatic-delivered PAuNRs and near-infrared laser irradiation, with the skin temperature controlled by cooling. Unlike intravenous injection, lymphatic injection delivered PAuNRs at a high concentration within a short period. The results show that lymphatic administration has the potential to deliver anti-cancer agents to metastatic lymph nodes for inhibition of tumor growth and could be developed into a new therapeutic method.


Asunto(s)
Antineoplásicos/farmacología , Rayos Infrarrojos , Ganglios Linfáticos/efectos de los fármacos , Neoplasias/terapia , Animales , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Oro/química , Liposomas/química , Liposomas/metabolismo , Ganglios Linfáticos/patología , Ganglios Linfáticos/efectos de la radiación , Metástasis Linfática , Ratones , Nanotubos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fototerapia , Distribución Tisular
3.
J Control Release ; 172(3): 879-84, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24144919

RESUMEN

Lymph node dissection for regional nodal metastasis is a primary option, but is invasive and associated with adverse effects. The development of non-invasive therapeutic methods in preclinical experiments using mice has been restricted by the small lymph node size and the limited techniques available for non-invasive monitoring of lymph node metastasis. Here, we show that photothermal therapy (PTT) using gold nanorods (GNRs) and near-infrared (NIR) laser light shows potential as a non-invasive treatment for tumors in the proper axillary lymph nodes (proper-ALNs) of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of lymph nodes (up to 13mm in diameter, similar in size to human lymph nodes). Tumor cells were inoculated into the proper-ALNs to develop a model of metastatic lesions, and any anti-tumor effects of therapy were assessed. We found that GNRs accumulated in the tumor in the proper-ALNs 24h after tail vein injection, and that irradiation with NIR laser light elevated tumor temperature. Furthermore, combining local or systemic delivery of GNRs with NIR irradiation suppressed tumor growth more than irradiation alone. We propose that PTT with GNRs and NIR laser light can serve as a new therapeutic method for lymph node metastasis, as an alternative to lymph node dissection.


Asunto(s)
Oro/uso terapéutico , Ganglios Linfáticos/patología , Metástasis Linfática/prevención & control , Nanotubos/química , Animales , Línea Celular Tumoral , Oro/química , Oro/farmacocinética , Humanos , Hipertermia Inducida , Rayos Infrarrojos , Terapia por Luz de Baja Intensidad , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/efectos de la radiación , Metástasis Linfática/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA