Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974562

RESUMEN

The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet-induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1-positive (SF-1-positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Dieta Alta en Grasa , Técnicas de Silenciamiento del Gen , Homeostasis , Hipotálamo/metabolismo , Resistencia a la Insulina , Leptina/metabolismo , Ratones , Factor Esteroidogénico 1/metabolismo , Proteínas de Unión al GTP rap1/genética
2.
Clin Cancer Res ; 16(23): 5630-40, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21138865

RESUMEN

PURPOSE: Recent evidence suggests that at least some sarcomas arise through aberrant differentiation of mesenchymal stromal cells (MSCs), but MSCs have never been isolated directly from human sarcoma specimens. EXPERIMENTAL DESIGN: We examined human sarcoma cell lines and primary adherent cultures derived from human sarcoma surgical samples for features of MSCs. We further characterized primary cultures as either benign or malignant by the presence of tumor-defining genetic lesions and tumor formation in immunocompromised mice. RESULTS: We show that a dedifferentiated liposarcoma cell line DDLS8817 posesses fat, bone, and cartilage trilineage differentiation potential characteristic of MSCs. Primary sarcoma cultures have the morphology, surface immunophenotype, and differentiation potential characteristic of MSCs. Surprisingly, many of these cultures are benign, as they do not form tumors in mice and lack sarcoma-defining genetic lesions. Consistent with the recently proposed pericyte origin of MSCs in normal human tissues, sarcoma-derived benign MSCs (SDBMSCs) express markers of pericytes and cooperate with endothelial cells in tube formation assays. In human sarcoma specimens, a subset of CD146-positive microvascular pericytes expresses CD105, an MSC marker, whereas malignant cells largely do not. In an in vitro coculture model, SDBMSCs as well as normal human pericytes markedly stimulate the growth of sarcoma cell lines. CONCLUSIONS: SDBMSCs/pericytes represent a previously undescribed stromal cell type in sarcoma that may contribute to tumor formation.


Asunto(s)
Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/fisiología , Sarcoma/patología , Células del Estroma/patología , Células del Estroma/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Separación Celular/métodos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Trasplante Heterólogo
3.
Biol Psychiatry ; 68(6): 528-35, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20591415

RESUMEN

BACKGROUND: The protein p11 (also called S100A10) is downregulated in human and rodent depressive-like states. Considerable experimental evidence also implicates p11 in the mechanism of action of antidepressant drugs and electroconvulsive seizures, in part due to its interaction with specific serotonin receptors. Brain-derived neurotrophic factor (BDNF) has been linked to the therapeutic activity of antidepressants in rodent models and humans. In the current study, we investigated whether BDNF regulates p11 in vitro and in vivo. METHODS: We utilized primary neuronal cultures, in vivo analyses of transgenic mice, and behavioral techniques to assess the effects of BDNF on p11. RESULTS: Results indicate that BDNF stimulates p11 expression through tropomyosin-related kinase B (trkB) receptors and via the mitogen-activated protein kinase signaling pathway. Brain-derived neurotrophic factor-induced changes in p11 in vivo correlate with changes in ligand binding to the 5-hydroxytryptamine receptor 1B, the subcellular localization of which is known to be regulated by p11. Behavioral studies demonstrate that p11 knockout mice are insensitive to the antidepressant actions of BDNF. CONCLUSIONS: Taken together, our data demonstrate that p11 levels are regulated by BDNF in vitro and in vivo and that the antidepressant-like effect of BDNF in two well-established behavioral models requires p11. These data support a role for p11 in the antidepressant activity of neurotrophins.


Asunto(s)
Anexina A2/biosíntesis , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Citalopram/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas S100/biosíntesis , Transducción de Señal/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/genética , Técnicas de Cultivo de Célula , Relación Dosis-Respuesta a Droga , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Serotonina/farmacología , Transducción de Señal/fisiología
4.
Biol Psychiatry ; 66(10): 964-71, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19699473

RESUMEN

BACKGROUND: Adolescence is considered a critical time of life for emotional development in humans. During this period the amygdala, which regulates emotions, undergoes structural reorganization. Auditory fear conditioning, a form of amygdala-dependent emotional learning, occurs differently in juvenile and adult rodents. Because this learning is mediated by plastic changes in the thalamic and cortical inputs to lateral amygdala (LA), we investigated changes in synaptic properties of these inputs during juvenile-to-adult transition. METHODS: Whole-cell patch clamp recording in amygdala slices from juvenile and young adult mice was conducted to investigate long-term potentiation and basal synaptic transmission in the thalamic and cortical inputs to LA. RESULTS: We show that physiological differences develop between thalamic and cortical afferents to LA during the juvenile-to-adult transition. Although in juvenile mice the two pathways have similar properties, in young adult mice the thalamic pathway has reduced plasticity, increased number of quanta released by a single action potential, and decreased proportion of silent synapses. CONCLUSIONS: Changes in thalamic but not cortical inputs to amygdala take place during late development and might contribute to differences in auditory fear conditioning between juveniles and adults.


Asunto(s)
Amígdala del Cerebelo/citología , Corteza Cerebral/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Factores de Edad , Análisis de Varianza , Animales , Maleato de Dizocilpina/farmacología , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Sinapsis/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA