Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 106(2): 282-91, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21521539

RESUMEN

There are concerns that weight-loss (WL) diets based on very low carbohydrate (LC) intake have a negative impact on antioxidant status and biomarkers of cardiovascular and metabolic health. Obese men (n 16) participated in a randomised, cross-over design diet trial, with food provided daily, at approximately 8.3 MJ/d (approximately 70 % of energy maintenance requirements). They were provided with two high-protein diets (30 % of energy), each for a 4-week period, involving a LC (4 % carbohydrate) and a moderate carbohydrate (MC, 35 % carbohydrate) content. Body weight was measured daily, and weekly blood samples were collected. On average, subjects lost 6.75 and 4.32 kg of weight on the LC and MC diets, respectively (P < 0.001, SED 0.350). Although the LC and MC diets were associated with a small reduction in plasma concentrations of retinol, vitamin E (α-tocopherol) and ß-cryptoxanthin (P < 0.005), these were still above the values indicative of deficiency. Interestingly, plasma vitamin C concentrations increased on consumption of the LC diet (P < 0.05). Plasma markers of insulin resistance (P < 0.001), lipaemia and inflammation (P < 0.05, TNF-α and IL-10) improved similarly on both diets. There was no change in other cardiovascular markers with WL. The present data suggest that a LC WL diet does not impair plasma indices of cardiometabolic health, at least within 4 weeks, in otherwise healthy obese subjects. In general, improvements in metabolic health associated with WL were similar between the LC and MC diets. Antioxidant supplements may be warranted if LC WL diets are consumed for a prolonged period.


Asunto(s)
Antioxidantes/metabolismo , Dieta Baja en Carbohidratos , Dieta Reductora/métodos , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Obesidad/dietoterapia , Pérdida de Peso/fisiología , Adulto , Anciano , Ácido Ascórbico/sangre , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Estudios Cruzados , Criptoxantinas , Endotelio Vascular/efectos de los fármacos , Ingestión de Energía , Humanos , Hiperlipidemias/sangre , Mediadores de Inflamación/sangre , Resistencia a la Insulina , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/prevención & control , Persona de Mediana Edad , Necesidades Nutricionales , Obesidad/sangre , Factores de Riesgo , Vitamina A/sangre , Xantófilas/sangre , alfa-Tocoferol/sangre
2.
J Agric Food Chem ; 55(12): 4889-94, 2007 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-17489604

RESUMEN

Epidemiological studies assessing the health benefits of drinking black tea are equivocal. Such disparity may reflect an inability of semiquantitative assessment to consider how infusion time and addition of milk affect the bioavailability of potentially beneficial antioxidant polyphenols. Six brands of tea demonstrated similar increases in antioxidant capacity and total phenolic and catechin contents with increasing infusion time. These results were unaffected by the addition of milk. Consumption of black tea (400 mL) was associated with significant increases in plasma antioxidant capacity (10%) and concentrations of total phenols (20%), catechins (32%), and the flavonols quercetin (39%) and kaempferol (45%) (all p < 0.01) within 80 min. This was unaffected by adding milk. Infusion time may therefore be a more important determinant in the absorption of polyphenols from black tea. Observational studies assessing the health benefits of tea consumption require recording of brewing methods as well as frequency of consumption.


Asunto(s)
Flavonoides/química , Fenoles/química , , Absorción , Animales , Bebidas , Biflavonoides/química , Catequina/análogos & derivados , Catequina/química , Humanos , Absorción Intestinal , Cinética , Leche , Polifenoles , Quercetina/química
3.
Biochem Pharmacol ; 70(6): 888-93, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16038882

RESUMEN

Oxidative stress is a characteristic of cancerous colon tissue and inflammatory bowel diseases that increase colon cancer risk. Epidemiological evidence supports a protective effect of plant-derived compounds. Aspirin is also protective against colon cancer. The mechanism of action is unclear although salicylic acid, the main metabolite of aspirin, has been shown to decrease the synthesis of pro-inflammatory and potentially neo-plastic prostaglandins. Salicylic acid is found in significant quantities in a plant-based diet. However, in plants salicylic acid is also reported to modulate the expression of numerous enzymes with antioxidant activity. The aim of this study was to assess whether salicylic acid can modulate pro-cancerous biological pathways in the colon. Oxidative stress, prostaglandins and cytosolic glutathione peroxidase (cyGPX) were analysed in proximal, transverse and distal colon from a rat model of diet-induced oxidative stress. Elevated plasma pyruvate kinase activity (1293+/-206 U/ml) and increased indices of lipid peroxidation in colon (proximal 6.4+/-0.84 nM MDA/mg protein; transverse 6.9+/-0.97 nM MDA/mg protein; distal 5.2+/-0.62 nM MDA/mg protein) from rats fed a Vitamin E deficient diet were significantly decreased on supplementation with salicylic acid (plasma pyruvate 546+/-43 U/ml; salicylic acid proximal 3.6+/-0.39 nM MDA/mg protein; transverse 4.5+/-0.61 nM MDA/mg protein; distal 4.4+/-0.27 nM MDA/mg protein). Reductions in oxidative stress and prostaglandin production on supplementation with salicylic acid were associated with an elevation in glutathione peroxidase activity (Vitamin E deficient proximal 0.056+/-0.013 U/mg protein; transverse 0.073+/-0.008 U/mg protein; distal 0.088+/-0.010 U/mg protein; Vitamin E deficient with salicylic acid proximal 0.17+/-0.01 U/mg protein; transverse 0.23+/-0.016 U/mg protein; distal 0.16+/-0.020 U/mg protein). Gpx1 and Gpx2 gene transcripts were not elevated in association with increased activity of the soluble glutathione peroxidase activity. Glutathione peroxidases are key antioxidant enzymes, catalysing the decomposition of potentially toxic lipid peroxides. Gpx activity and regulation of Gpx gene transcription has been shown previously to be complex with activity not necessarily mirrored by a corresponding elevation in gene transcription. By supplementing the diet of Vitamin E deficient rats with salicylic acid (1 g/kg diet), this study assessed effects of salicylic acid on cytosolic glutathione peroxidase activity in the colon. The ability of salicylic acid to modulate antioxidant enzymes in colon tissue may be an important mechanism in inhibiting colon cancer development.


Asunto(s)
Antiinflamatorios/farmacología , Colon/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Estrés Oxidativo , Ácido Salicílico/farmacología , Animales , Colon/enzimología , Colon/metabolismo , Dinoprostona/metabolismo , Masculino , Reacción en Cadena de la Polimerasa , Ratas
4.
Eur J Nutr ; 44(4): 195-203, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15309415

RESUMEN

BACKGROUND: Fruit and vegetable consumption protects against cancer. This is attributed in part to antioxidants such as vitamin E combating oxidative DNA damage. Anthocyanins are found in significant concentrations in the human diet. However, it remains to be established whether they are bioactive in vivo. AIM: To investigate the consequence both of vitamin E deficiency on oxidative damage to DNA and lipids and the cytoprotective effect of nutritionally relevant levels of cyanidin-3-glycoside both in vivo in rats and in vitro in human colonocytes. METHODS: Male Rowett Hooded Lister rats were fed a diet containing less than 0.5 mg/kg vitamin E or a vitamin E supplemented control diet containing 100 mg d alpha-tocopherol acetate/kg. Half of the controls and vitamin E-deficient rats received cyanidin-3-glycoside (100 mg/kg). After 12 weeks endogenous DNA stability in rat lymphocytes (strand breaks and oxidised bases) and response to oxidative stress ex vivo (H2O2; 200 microM) was measured by single cell gel electrophoresis (SCGE). Tissue levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-Oxo-dG) were measured by HPLC with EC detection. D alpha-tocopherol and lipid peroxidation products (thiobarbituric acid reactive substances; TBARS) were measured by HPLC. Rat plasma pyruvate kinase and the production of reactive oxygen by phagocytes were detected spectrophotometrically and by flow cytometry respectively. Immortalised human colon epithelial cells (HCEC) were preincubated in vitro with the anthocyanins cyanidin and cyanidin-3-glycoside and the flavonol quercetin (all 50 microM) before exposure to H2O2 (200 microM). DNA damage was measured by SCGE as above. RESULTS: Plasma and liver d alpha-tocopherol declined progressively over 12 weeks in rats made vitamin E deficient. Lipid peroxidation was increased significantly in plasma, liver and red cells. Reactive oxygen levels in phagocytes and plasma pyruvate kinase were increased. Vitamin E deficiency did not affect DNA stability in rat lymphocytes, liver or colon. Cyanidin-3-glycoside did not alter lipid peroxidation or DNA damage in rats. However, it was chemoprotective against DNA damage in human colonocytes.DNA strand breakage was decreased 38.8 +/- 2.2% after pretreatment with anthocyanin. CONCLUSION: While it is accepted that vitamin E alters lipid oxidation in vivo, its role in maintaining DNA stability remains unclear. Moreover, whereas cyanidin-3-glycoside protects against oxidative DNA damage in vitro, at nutritionally relevant concentrations it is ineffective against oxidative stress in vivo.


Asunto(s)
Antocianinas/administración & dosificación , Antioxidantes/administración & dosificación , Daño del ADN , Glucósidos/administración & dosificación , Deficiencia de Vitamina E/metabolismo , Animales , Línea Celular , Citoprotección , Daño del ADN/efectos de los fármacos , Dieta , Humanos , Peróxido de Hidrógeno , Peroxidación de Lípido , Hígado/química , Hígado/metabolismo , Linfocitos/metabolismo , Modelos Animales , Estrés Oxidativo , Ratas , Deficiencia de Vitamina E/sangre , alfa-Tocoferol/análisis , alfa-Tocoferol/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA