Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Nutr ; 154(2): 455-468, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37778509

RESUMEN

BACKGROUND: Palm oil (PO) is the most widely utilized plant oil for food production. Owing to the great ecologic problems associated with PO production, sustainably produced fats, such as insect fat, might be a suitable alternative. OBJECTIVES: The hypothesis was tested that fat from Hermetia illucens larvae (HF) compared with PO and soybean oil (SO) has no adverse effects on hepatic lipid metabolism, plasma metabolome, and cecal microbiome in obese Zucker rats. METHODS: Thirty male obese Zucker rats were randomly assigned to 3 groups (SO, PO, HF; n = 10 rats/group) and fed 3 different semisynthetic diets containing either SO, PO, or HF as the main fat source for 4 wk. The effects were evaluated by measurement of liver and plasma lipid concentrations, liver transcriptomics, targeted plasma metabolomics, and cecal microbiomics. RESULTS: Supplementation of HF reduced hepatic triglyceride concentration and messenger ribonucleic acid concentrations of selected genes involved in fatty acid and triglyceride synthesis in comparison to PO (P < 0.05). Pairwise comparison of the Simpson index and Jaccard index showed a higher cecal microbial α- and ß-diversity in rats fed the HF diet than in rats fed the PO diet (P = 0.015 and P = 0.027), but no difference between rats fed the diets with SO or PO. Taxonomic analysis of the cecal microbial community revealed a lower abundance of Clostridium_sensu_stricto_1 and a higher abundance of Blautia, Mucispirillum, Anaerotruncus, Harryflintia, and Peptococcus in rats supplemented with HF than in rats supplemented with PO (P < 0.05). CONCLUSIONS: HF, compared with PO, has liver lipid-lowering effects in obese Zucker rats, which may be caused by a shift in the gut microbial community. Thus, HF might serve as a sustainably produced fat alternative to PO for food production.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Ratas , Animales , Triglicéridos , Aceite de Palma , Ratas Zucker , Grasas de la Dieta/farmacología , Obesidad/metabolismo , Hígado/metabolismo , Aceite de Soja , Dípteros/metabolismo
2.
Nutrients ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686765

RESUMEN

A high phosphorus intake has been associated with various metabolic disorders, including chronic kidney disease, cardiovascular disease, and osteoporosis. Recent studies have demonstrated the effects of dietary phosphorus on lipid and glucose metabolism. This study investigated the impact of a high-phosphorus diet on mouse skeletal muscle lipid composition and gene transcription. Adult male mice (n = 12/group) received either a diet with an adequate (0.3%) or a high (1.2%) phosphorus concentration for 6 weeks. The lipidome analysis showed that among the 17 analyzed lipid classes, the concentrations of three classes were reduced in the high phosphorus group compared to the adequate phosphorus group. These classes were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and lysophosphatidylcholine (LPC) (p < 0.05). Out of the three hundred and twenty-three individual lipid species analyzed, forty-nine showed reduced concentrations, while three showed increased concentrations in the high phosphorus group compared to the adequate phosphorus group. The muscle transcriptome analysis identified 142 up- and 222 down-regulated transcripts in the high phosphorus group compared to the adequate phosphorus group. Gene set enrichment analysis identified that genes that were up-regulated in the high phosphorus group were linked to the gene ontology terms "mitochondria" and "Notch signaling pathway", whereas genes that were down-regulated were linked to the "PI3K-AKT pathway". Overall, the effects of the high-phosphorus diet on the muscle lipidome and transcriptome were relatively modest, but consistently indicated an impact on lipid metabolism.


Asunto(s)
Lipidómica , Transcriptoma , Masculino , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Músculo Esquelético , Fósforo , Lisofosfatidilcolinas
3.
Arch Anim Nutr ; 77(3): 228-244, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37335004

RESUMEN

The present study aimed to compare the effects of vitamin D2 and vitamin D3 supplementation on concentrations of total and free 25(OH)D in plasma and the expression of genes involved in the innate immune system in peripheral blood mononuclear cells (PBMC) in weaned pigs. Five groups of pigs (with an initial body weight of around 9 kg) received basal diets supplemented with either 500 (control group), 1000 or 2000 IU vitamin D3/kg diet or 1000 or 2000 IU vitamin D2/kg diet for a period of 4 weeks. Vitamin D supplementation did not influence feed intake, body weight gain, feed conversion ratio, apparent total tract digestibility of calcium and phosphorus, and serum concentrations of calcium, inorganic phosphate and parathyroid hormone. Supplementation of vitamin D3 led to a dose-dependent increase of the concentrations of total and free 25(OH)D in serum. In contrast, pigs supplemented with 1000 or 2000 IU vitamin D2/kg diet did not have higher concentrations of total and free 25(OH)D in serum than the control group. The ratio of free/total 25(OH)D in serum was not influenced by vitamin D3 supplementation, whereas the group supplemented with 2000 IU vitamin D2/kg diet had a higher free/total 25(OH)D ratio than the groups supplemented with 1000 or 2000 IU vitamin D3/kg diet. Genes involved in vitamin D signalling (CYP27B1, VDR), as well as pro-inflammatory and immune regulatory genes (TLR4, TNF, IL1B and TGFB1) and genes encoding porcine protegrins (NPG1, NPG4), proteins belonging to the group of antimicrobial peptides, in PBMC were not different among groups supplemented with vitamin D3 or vitamin D2 and the control group. Therefore, the study indicates that supplementation of vitamin D2 causes much lower levels of total 25(OH)D than supplementation of vitamin D3 and that supplementation of vitamins D2 or D3 at moderate levels does not have an impact on the innate immune function in healthy pigs.


Asunto(s)
Colecalciferol , Leucocitos Mononucleares , Porcinos , Animales , Colecalciferol/farmacología , Calcio , Dieta/veterinaria , Alimentación Animal/análisis , Vitamina D , Calcifediol , Suplementos Dietéticos , Peso Corporal , Inmunidad
4.
Arch Anim Nutr ; 77(2): 121-140, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37169773

RESUMEN

Replacement of soybean oil by insect fat from Hermetia illucens (HI) has been reported to increase the proportions of saturated fatty acids (SFA) and decrease those of polyunsaturated fatty acids (PUFA) in total lipids of breast and thigh meat in broilers. Since the susceptibility of meat to oxidation is strongly dependent on its PUFA content, the present study hypothesised that replacement of soybean oil by HI larvae fat in broiler diets reduces the formation of lipid oxidation products, including oxidation products of cholesterol and phytosterols, in heat-processed breast muscle of broilers. To test this hypothesis, 100 male, 1-day-old Cobb 500 broilers were assigned to three groups and fed three different nutrient adequate diets, which varied only in the fat source (group HI-0: 0% HI larvae fat and 5% soybean oil; group HI-2.5: 2.5% HI larvae fat and 2.5% soybean oil; group HI-5.0: 5.0% HI larvae fat and 0% soybean oil), in a three-phase feeding system for 35 days. While the growth performance of the broilers was not different, the absolute and relative breast muscle weights were higher in group HI-5.0 than in group HI-0 (p < 0.05). The proportions of C12:0, C14:0, C14:1, C16:0, C16:1 and total SFA were higher and those of C18:1, C18:2 n-6, C18:3 n-3 and total PUFA were lower in breast muscle total lipids of group HI-5.0 than in groups HI-2.5 and HI-0 (p < 0.05). Lipidomic analysis of breast muscle revealed that the concentration of triacylglycerols was 46% and 53% lower in groups HI-2.5 and HI-5.0, respectively, than in group HI-0 (p < 0.05), whereas all other lipid classes detected did not differ among groups. Concentrations of thiobarbituric acid-reactive substances, 7α-hydroxycholesterol, 7ß-hydroxycholesterol and total cholesterol oxidation products in heat-processed breast muscle were lower in group HI-5.0 than in group HI-0 (p < 0.05). Concentrations of oxidation products of phytosterols in heat-processed breast muscle were generally much lower than those of cholesterol oxidation products and did not differ between the three groups of broilers. In conclusion, complete replacement of soybean oil with HI larvae fat in broiler diets strongly alters the fatty acid composition of breast muscle total lipids and reduce lipid oxidation of the breast muscle during heat-processing.


Asunto(s)
Dípteros , Fitosteroles , Animales , Masculino , Dieta/veterinaria , Aceite de Soja , Lipidómica , Larva , Calor , Pollos/fisiología , Alimentación Animal/análisis , Ácidos Grasos , Colesterol/análisis , Músculos Pectorales/química
5.
Int J Mol Sci ; 22(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063487

RESUMEN

Conflicting reports exist with regard to the effect of ecdysterone, the predominating representative of steroid hormones in insects and plants, on hepatic and plasma lipid concentrations in different rodent models of obesity, fatty liver, and diabetes, indicating that the effect is dependent on the rodent model used. Here, the hypothesis was tested for the first time that ecdysterone causes lipid-lowering effects in genetically obese Zucker rats. To test this hypothesis, two groups of male obese Zucker rats (n = 8) were fed a nutrient-adequate diet supplemented without or with 0.5 g ecdysterone per kg diet. To study further if ecdysterone is capable of alleviating the strong lipid-synthetic activity in the liver of obese Zucker rats, the study included also two groups of male lean Zucker rats (n = 8) which also received either the ecdysterone-supplemented or the non-supplemented diet. While hepatic and plasma concentrations of triglycerides and cholesterol were markedly higher in the obese compared to the lean rats (p < 0.05), hepatic and plasma triglyceride and cholesterol concentrations did not differ between rats of the same genotype fed the diets without or with ecdysterone. In conclusion, the present study clearly shows that ecdysterone supplementation does not exhibit lipid-lowering actions in the liver and plasma of lean and obese Zucker rats.


Asunto(s)
Ecdisterona/metabolismo , Ecdisterona/farmacología , Metabolismo de los Lípidos/fisiología , Hígado/efectos de los fármacos , Obesidad/metabolismo , Animales , Suplementos Dietéticos , Fructosamina/sangre , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Hígado/metabolismo , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas Zucker , Reproducibilidad de los Resultados
6.
Animals (Basel) ; 11(1)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435209

RESUMEN

l-carnitine plays an important role in energy metabolism through supporting the transport of activated fatty acids to the subcellular site of ß-oxidation. An acute phase reaction (APR) is known as an energy consuming process. Lipopolysaccharides (LPS) are often used in animal models to study intervention measures during innate immune responses such as APR. Thus, the aim of the study was to investigate the effects of dietary l-carnitine supplementation during an LPS-induced APR in mid-lactating German Holstein cows. Animals were assigned to a control (CON, n = 26) or l-carnitine group (CAR, n = 27, 25 g rumen-protected l-carnitine/cow/d) and received an intravenous injection of LPS (0.5 µg/kg body weight) at day 111 post-partum. Blood samples were collected from day 1 pre-injection until day 14 post-injection (pi). From 0.5 h pi until 72 h pi blood samplings and clinical examinations were performed in short intervals. Clinical signs of the APR were not altered in group CAR except rumen motility which increased at a lower level compared to the CON group after a period of atonia. Group CAR maintained a higher insulin level compared to group CON even up to 72 h pi which might support glucose utilization following an APR.

7.
Poult Sci ; 99(12): 6837-6847, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33248599

RESUMEN

Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine (Cys) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.


Asunto(s)
Antioxidantes , Pollos , Suplementos Dietéticos , Calor , Metionina , Estrés Oxidativo , Alimentación Animal/análisis , Animales , Antioxidantes/análisis , Pollos/metabolismo , Dieta/veterinaria , Masculino , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Plasma/enzimología
8.
J Anim Sci Biotechnol ; 11: 57, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32518649

RESUMEN

BACKGROUND: We hypothesised that supplementation of green tea extract (GTE) in dairy cows during the transition period can attenuate proinflammatory conditions and prevent endoplasmic reticulum (ER) stress in the liver of these cows. Thirty Holstein cows with an average parity of 3.06 (± 1.31, SD) were divided into a control group and a group that received a daily amount of 10 g of GTE from d 7 before the calving day and a daily amount of 20 g of GTE from the day of calving until d 7 of lactation. RESULTS: Cows supplemented with GTE did not show differences in energy intake or milk yield in weeks 2-7 of lactation. However, these cows had a lower milk fat concentration and a lower energy corrected milk yield than the control cows and showed a trend of improved energy balance. The relative mRNA concentrations of proinflammatory genes, genes involved in the acute phase reaction and antioxidant genes in the liver in weeks 1, 4 and 7 of lactation were not different between the two groups of cows. The concentrations of α-tocopherol and the Trolox equivalent antioxidant capacity in plasma were not different between the two groups. However, the group supplemented with GTE showed significant reductions of some genes of the unfolded protein response (UPR) in week 1 and a trend of lower liver triacylglycerol (TAG) concentrations in the liver compared to the control group. CONCLUSIONS: This study shows that supplementation of GTE in dairy cows lowers the fat concentration in the milk but overall has no effect on the expression of inflammatory genes and the antioxidative status in dairy cows during early lactation. The finding of reduced mRNA levels of genes involved in the UPR at week 1, however, supports other results showing that supplementation of polyphenols could prevent the development of ER stress in the liver of cows during early lactation. The finding of a tendency towards a reduced TAG concentration in the liver of cows supplemented with GTE might be due to an improved energy balance in these cows.

9.
Nutrients ; 12(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252339

RESUMEN

The present study tested the hypothesis that the liver lipid-lowering effect of insect meal (IM) is caused by its low methionine concentration. A total of fifty, male obese Zucker rats were randomly assigned to five groups of 10 rats each (casein (C), IM, IM + Met, IM + Cys, and IM + EAA). While group C received a diet with casein, the IM-fed groups received a diet with IM as the protein source. In groups IM + Met, IM + Cys and IM + EAA, the diets were additionally supplemented with methionine, cysteine and essential amino acids (EAA), respectively. Hepatic concentrations of triacylglycerols and cholesterol, and hepatic mRNA levels and activities of lipogenic and cholesterogenic enzymes were markedly lower in the IM-fed groups than in group C (p < 0.05). All of these parameters either did not differ across the IM-fed groups or were only slightly higher in groups IM + Met, IM + Cys and IM+EAA than in the group IM. In conclusion, the results indicate that a difference in the amino acid composition between IM and casein, a low concentration of methionine in IM and a reduced cysteine synthesis secondary to a decreased methionine availability resulting from feeding IM are not causative for the lipid-lowering effect of IM.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Aminoácidos Sulfúricos/metabolismo , Proteínas en la Dieta/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Aminoácidos Esenciales/administración & dosificación , Aminoácidos Sulfúricos/administración & dosificación , Animales , Caseínas/metabolismo , Cisteína/metabolismo , Proteínas en la Dieta/administración & dosificación , Insectos , Lípidos/análisis , Masculino , Ratas , Ratas Zucker
10.
Animals (Basel) ; 10(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098123

RESUMEN

Dairy cows are metabolically challenged during the transition period. Furthermore, the process of parturition represents an energy-consuming process. The degree of negative energy balance and recovery from calving also depends on the efficiency of mitochondrial energy generation. At this point, L-carnitine plays an important role for the transfer of fatty acids to the site of their mitochondrial utilisation. A control (n = 30) and an L-carnitine group (n = 29, 25 g rumen-protected L-carnitine per cow and day) were created and blood samples were taken from day 42 ante partum (ap) until day 110 post-partum (pp) to clarify the impact of L-carnitine supplementation on dairy cows, especially during the transition period and early puerperium. Blood and clinical parameters were recorded in high resolution from 0.5 h to 72 h pp. L-carnitine-supplemented cows had higher amounts of milk fat in early lactation and higher triacylglyceride concentrations in plasma ap, indicating increased efficiency of fat oxidation. However, neither recovery from calving nor energy balance and lipomobilisation were influenced by L-carnitine.

11.
Poult Sci ; 98(12): 6772-6786, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31250025

RESUMEN

This study investigated the hypothesis that dietary supplementation of leucine (Leu) above actual recommendations activates protein synthesis and inhibits protein degradation pathways on the molecular level and supports higher muscle growth in broilers. Day-old male Cobb-500 broilers (n = 180) were allotted to 3 groups and phase-fed 3 different corn-wheat-soybean meal-based basal diets during periods 1 to 10, 11 to 21, and 22 to 35 D. The control group (L0) received the basal diet which met the broiler's requirements of nutrients and amino acids for maintenance and growth. Groups L1 and L2 received basal diets supplemented with Leu to exceed recommendations by 35 and 60%, respectively, and isoleucine (Ile) and valine (Val) were supplemented to keep Leu: Ile and Leu: Val ratios fixed. Samples of liver and breast muscle and pancreas were collected on days 10, 21, and 35. The gene expression and abundance of total and phosphorylated proteins involved in the mammalian target of rapamycin pathway of protein synthesis, in the ubiquitin-proteasome pathway and autophagy-lysosomal pathway of protein degradation, in the general control nonderepressible 2/eukaryotic translation initiation factor 2A pathway involved in the inhibition of protein synthesis, and in the myostatin-Smad2/3 pathway involved in myogenesis were evaluated in the muscle, as well as expression of genes involved in the growth hormone axis. Growth performance, feed intake, the feed conversion ratio, and carcass weights did not differ between the 3 groups (P > 0.05). Plasma concentrations of Leu, Ile, and Val and of their keto acids, and the activity of the branched-chain α-keto acid dehydrogenase in the pancreas increased dose dependently with increasing dietary Leu concentrations. In the breast muscle, relative mRNA abundances of genes and phosphorylation of selected proteins involved in all investigated pathways were largely uninfluenced by dietary Leu supplementation (P > 0.05). In summary, these data indicate that excess dietary Leu concentrations do not influence protein synthesis or degradation pathways, and subsequently do not increase muscle growth in broilers at fixed ratios to Ile and Val.


Asunto(s)
Pollos/fisiología , Isoleucina/administración & dosificación , Leucina/administración & dosificación , Proteínas Musculares/biosíntesis , Valina/administración & dosificación , Alimentación Animal/análisis , Animales , Proteínas Aviares/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Masculino , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
12.
Br J Nutr ; 121(12): 1323-1333, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30935426

RESUMEN

While strong evidence from clinical studies suggests beneficial effects of carnitine supplementation on metabolic health, serious safety concerns associated with carnitine supplementation have been raised from studies in mice. Considering that the carnitine doses in these mice studies were up to 100 times higher than those used in clinical studies, the present study aimed to address possible safety concerns associated with long-term supplementation of a carnitine dose used in clinical trials. Two groups of NMRI mice were fed either a control or a carnitine-supplemented diet (1 g/kg diet) from weaning to 19 months of age, and parameters of hepatic lipid metabolism and stress signalling and skeletal muscle gene expression were analysed in the mice at 19 months of age. Concentrations of free carnitine and acetylcarnitine in plasma and tissues were higher in the carnitine than in the control group (P<0·05). Plasma concentrations of free carnitine and acetylcarnitine were higher in mice at adult age (10 and 15 months) than at advanced age (19 months) (P<0·05). Hepatic mRNA and protein levels of genes involved in lipid metabolism and stress signalling and hepatic and plasma lipid concentrations did not differ between the carnitine and the control group. Skeletal muscle transcriptome analysis in 19-month-old mice revealed only a moderate regulation between carnitine and control group. Lifelong carnitine supplementation prevents an age-dependent impairment of plasma carnitine status, but safety concerns associated with long-term supplementation of carnitine at doses used in clinical trials can be considered as unfounded.


Asunto(s)
Carnitina/farmacología , Suplementos Dietéticos , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Carnitina/sangre , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo
13.
J Anim Physiol Anim Nutr (Berl) ; 103(1): 242-250, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30315602

RESUMEN

This study investigated the hypothesis that dietary supplementation of L-methionine (L-Met) in weaned piglets in relation to DL-methionine (DL-Met) results in a higher antioxidant status and lower need for antioxidant enzyme activation in intestinal epithelium and body tissues, and improves gut morphology and gut barrier function as well as performance. A total of 99 early-weaned 21-day old piglets were allotted to six groups and fed a semi-synthetic wheat-barley-based basal diet supplemented with 0.067%, 0.107% and 0.147% of either DL-Met (MetAmino; Evonik, Hanau, Germany) or L-Met (L-Met100; CJ Europe, Schwalbach am Taunus, Germany) to reach dietary Met concentrations of 0.16%, 0.20% and 0.24%, of which the latter met the requirements for maintenance and growth based on a pre-experiment. Feed intake and body weights were recorded weekly, and samples of plasma, liver and duodenum and jejunum mucosa were collected after 3 weeks at slaughter. Plasma concentrations of L-Met were similar, and those of D-Met and total Met were higher in piglets fed DL-Met in relation to those fed L-Met. Feed intake, daily gains and feed:gain ratio, and the relative bio-efficacy based on gains and feed:gain ratio were similar for both groups. Likewise, villi length, crypt depth, the villi length:crypt depth ratio in duodenum and jejunum and gene expression of tight junction proteins in the jejunum did not differ. Concentrations of antioxidants like glutathione and tocopherol, the total antioxidant capacity, the mRNA abundance or activity of antioxidant enzymes like superoxide dismutase and glutathione peroxidase, concentrations of thiobarbituric acid reactive substances, markers for oxidative damage of lipids and the expression of inflammatory genes were similar in liver and jejunum mucosa. These data indicate that the effects of L-Met and DL-Met supplementation are comparable considering both piglet performance and parameters of gut health and function like gut morphology and the intestinal antioxidant status.


Asunto(s)
Antioxidantes/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Metionina/farmacología , Porcinos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Hígado/efectos de los fármacos
14.
Nutr Metab (Lond) ; 15: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344054

RESUMEN

BACKGROUND: Recently, supplementation of L-carnitine to obese rats was found to improve the carnitine status and to counteract an obesity-induced muscle fiber transition from type I to type II. However, it has not been resolved if the change of muscle fiber distribution induced in obese rats and the restoration of the "normal" muscle fiber distribution, which is found in lean rats, in obese rats by supplemental L-carnitine is causally linked with the carnitine status. In the present study we hypothesized that fiber type distribution in skeletal muscle is dependent on carnitine status. METHODS: To test this, an experiment with 48 piglets which were randomly allocated to four groups (n = 12) was performed. All piglets were given orally either 60 mg sodium bicarbonate/kg body weight (group CON), 20 mg L-carnitine and 60 mg sodium bicarbonate/kg body weight (group CARN), 30 mg pivalate (dissolved in sodium bicarbonate)/kg body weight (group PIV) or 20 mg L-carnitine and 30 mg pivalate/kg body weight (group CARN + PIV) each day for a period of 4 weeks. RESULTS: Concentrations of total carnitine in plasma, liver and longissimus dorsi and biceps femoris muscles were 2.0-2.7 fold higher in group CARN than in group CON, whereas these concentrations were 1.9-2.5-fold lower in group PIV than in group CON. The concentrations of total carnitine in these tissues did not statistically differ between group CARN + PIV and group CON. Fiber type distribution of longissimus dorsi and biceps femoris muscles, mRNA and protein levels of molecular regulators of fiber distribution in longissimus dorsi and biceps femoris muscles and mRNA levels of genes reflecting the metabolic phenotype of longissimus dorsi and biceps femoris muscles did not differ between groups. CONCLUSION: Changes in the systemic carnitine status and the muscle carnitine concentration induced by either supplementing L-carnitine or administering pivalate have no impact on the contractile and metabolic phenotype of skeletal muscles in pigs.

15.
Lipids Health Dis ; 15: 102, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27246092

RESUMEN

BACKGROUND: Conjugated linoleic acid (CLA) is known to affect the lipid metabolism in growing and lactating animals. However, potential effects on the metabolism of fat-soluble vitamins in lactating animals and co-occurring effects on their offspring are unknown. We aimed to investigate the effects of dietary CLA on concentrations of tocopherol in various tissues of lactating rats and their offspring and expression of genes involved in tocopherol metabolism. METHODS: Twenty-eight Wistar Han rats were allocated to 2 groups and fed either a control diet (control group) or a diet containing 0.9 % of cis-9, trans-11 and trans-10, cis-12 (1:1) CLA (CLA group) during pregnancy and lactation. Feed intake of dams and body weight of dams and their pups were recorded weekly. Tocopherol concentrations in various body tissues were determined at day 14 of lactation in dams and 1, 7 and 14 days after birth in pups. Expression of selected genes involved in metabolism of tocopherol was determined in dams and pups. The data were statistically analysed by analysis of variance. RESULTS: Feed intake and body weight development of nursing rats and their pups was similar in both groups. In livers of CLA-fed dams, tocopherol concentrations decreased by 24 % but expression of TTPA and CYP3A1, involved in tocopherol transport and metabolism, were not influenced. In the dams' adipose tissue, gene expression of receptors involved in tissue tocopherol uptake, LDLR and SCARB1, but not of LPL, increased by 30 to 50 % and tocopherol concentrations increased by 47 % in CLA-fed compared to control dams. Expression of LPL, LDLR and SCARB1 in mammary gland was not influenced by CLA-feeding. Tocopherol concentrations in the pup's livers and lungs were similar in both groups, but at 14 days of age, adipose tissue tocopherol concentrations, and LDLR and SCARB1 expression, were higher in the CLA-exposed pups. CONCLUSIONS: We show that dietary CLA affects tissue concentrations of tocopherol in lactating rats and tocopherol metabolism in rats and pups, but hardly influences tissue tocopherol concentrations in their offspring. This indicates that supplementation of CLA in pregnant and lactating animals is uncritical considering the tocopherol status of new-borns.


Asunto(s)
Suplementos Dietéticos , Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Tocoferoles/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Animales Lactantes , Peso Corporal/efectos de los fármacos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Lactancia/fisiología , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Glándulas Mamarias Animales/metabolismo , Leche/química , Embarazo , Ratas , Ratas Wistar , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
16.
Arch Anim Nutr ; 69(6): 425-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26490199

RESUMEN

During the periparturient phase, cows are typically in an inflammation-like condition, and it has been proposed that inflammation associated with the induction of stress of the endoplasmic reticulum (ER) in the liver contributes to the development of fatty liver syndrome and ketosis. In the present study, the hypothesis that supplementation of dairy cows with a plant product consisting of green tea (95%) and curcuma extract (5%) rich in polyphenols attenuates inflammation and ER stress in the liver during early lactation was investigated. Twenty-seven cows were assigned to two groups, either a control group (n=14) or a treatment group (n=13). Both groups of cows received a total mixed ration, and the ration of the treatment group was supplemented with 0.175 g of the plant product per kg dry matter from week 3 prepartum to week 9 postpartum. Dry matter intake and energy balance during week 2 to week 9 postpartum were not different between the two groups. However, cows supplemented with the plant product had a greater amount of energy-corrected milk during week 2 to week 9 postpartum and lower concentrations of triacylglycerols and cholesterol in the liver in week 1 and week 3 postpartum than cows of the control group (p<0.05). Cows supplemented with the plant product showed a trend towards a reduced mRNA concentration of haptoglobin (p<0.10), while relative mRNA concentrations of eight genes of the unfolded protein response considered in the liver were not different between the two groups of cows. Relative hepatic mRNA concentration of fibroblast growth factor, a stress hormone induced by various stress conditions, was reduced at week 1 and week 3 postpartum in cows supplemented with the plant product (p<0.05). Overall, the data of this study suggest that--although there were only minor effects on the occurrence of ER stress and inflammation--a supplementation of polyphenols might be useful to improve milk yield and prevent fatty liver syndrome in dairy cows.


Asunto(s)
Enfermedades de los Bovinos/tratamiento farmacológico , Regulación de la Expresión Génica , Inflamación/veterinaria , Leche/metabolismo , Polifenoles/metabolismo , Alimentación Animal/análisis , Animales , Bovinos , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/inmunología , Curcuma/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Estrés del Retículo Endoplásmico , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Lactancia , Hígado/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/metabolismo , Polifenoles/administración & dosificación , Té/química , Respuesta de Proteína Desplegada
17.
Arch Anim Nutr ; 69(4): 276-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097996

RESUMEN

Polyphenol-rich plant products as feed supplements have been shown to exert beneficial effects on feed efficiency in piglets. However, tannins as components of polyphenol-rich plant products are able to reduce the absorption of various trace elements. The present study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GME) and spent hops (SH), on iron (Fe), zinc (Zn) and copper (Cu) status in piglets supplied adequately with those trace elements. A trial with three groups of piglets which received a Control diet or the same diet supplemented with either 1% GME or 1% SH over a period of 4 weeks was performed. Concentrations of Fe, Zn and Cu in plasma, total iron binding capacity and saturation of transferrin in plasma did not differ between the three groups. Piglets fed the diet supplemented with SH showed no differences in the concentrations of Fe, Zn and Cu in the liver in comparison to the Control group. Piglets fed the diets supplemented with GME showed slightly lower concentrations of Zn and Cu in the liver than Control piglets (p < 0.05); however, concentrations of both elements remained in the physiological range. Overall, this study shows that the polyphenol-rich plant products GME and SH had marginal effect on the status of Fe, Zn and Cu in piglets.


Asunto(s)
Alimentación Animal , Dieta/veterinaria , Humulus , Polifenoles/administración & dosificación , Porcinos/fisiología , Oligoelementos/sangre , Vitis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/fisiología , Cobre/sangre , Femenino , Hierro/sangre , Masculino , Porcinos/crecimiento & desarrollo , Zinc/sangre
18.
BMC Vet Res ; 11: 54, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25888880

RESUMEN

BACKGROUND: In rats, it has been observed that treatment with activators of peroxisome proliferator-activated receptor α (PPARα) disturbs metabolic adaptations during lactation, which in turn lead to a reduction of milk fat content and gains of litters during the suckling period. It has not yet been investigated whether agonists of PPARα are impairing milk production of lactating sows in a similar manner as in rats. Therefore, the present study aimed to investigate the effect of treatment with clofibrate, a strong synthetic agonist of PPARα, on milk composition and litter gains in lactating sows. RESULTS: Twenty lactating sows received either a basal diet (control group) or the same diet with supplementation of 2 g of clofibrate per kg of diet (clofibrate group). In the clofibrate group, mRNA concentrations of various PPARα target genes involved in fatty acid utilization in liver and skeletal muscle were moderately up-regulated. Fat and energy content of the milk and gains of litters during the suckling period were not different between the control group and the clofibrate group. CONCLUSION: It is shown that treatment with clofibrate induces only a moderate up-regulation of PPARα target genes in liver and muscle of lactating sows and in turn might have limited effect on whole body fatty acid utilization. This may be the reason why clofibrate treatment did not influence milk fat content and gains of litters during the suckling period. Thus, the present study indicates that activation of PPARα induced either by native agonists such as dietary polyunsaturated fatty acids or a by negative energy balance might be largely uncritical in lactating sows with respect to milk production and litter gains in lactating sows.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Clofibrato/farmacología , Grasas/análisis , Lactancia/efectos de los fármacos , Leche/química , PPAR alfa/agonistas , Animales , Suplementos Dietéticos , Ácidos Grasos no Esterificados/sangre , Femenino , Proteínas de la Leche/análisis , Porcinos , Triglicéridos/sangre , Aumento de Peso/efectos de los fármacos
19.
J Trace Elem Med Biol ; 29: 216-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25468192

RESUMEN

The study investigated the effects of selenium (Se) supplementation on Se status in farmed fallow deer. Fallow deer were housed on grass pasture and adapted to consume ∼200 g of pelleted grain daily. Animals were divided into two groups. One group received pelleted grain enriched with sodium selenate for 12 weeks (Se+ group, N = 10). Se intake for the first 7 weeks was 0.18 mg/kg dry matter (DM) and 0.32 mg/kg DM for the subsequent 5 weeks. The control group was fed pelleted grain without extra Se (Se− group, N = 9, 0.06-0.08 mg/kg DM). Blood samples were collected at the beginning and the end of the experiment. After the animals were slaughtered, tissue samples were collected for analysis of Se concentrations and Se-dependent glutathione peroxidase 1 (GPx1) activity. In addition, Se-independent α-glutathione-S-transferase (α-GST) activity was analyzed in liver tissue. Se supplementation significantly increased Se levels in plasma and in tissues as follows: liver > spleen > skeletal muscle > myocardium > kidney. Se supplementation also significantly increased GPx1 activity in tissues in the following order: liver > skeletal muscle > spleen = myocardium > kidneys. However, hepatic α-GST activity did not differ between Se+ and Se− groups. As expected, Se supplementation increased blood and tissue Se concentrations and GPx1 activity, which suggests a better antioxidant status. However, the activity of α-GST, an important Se-independent antioxidant enzyme, was not altered, presumably because GPx provided an adequate antioxidant capacity even though Se intake was low.


Asunto(s)
Ciervos/sangre , Suplementos Dietéticos , Selenio/sangre , Selenio/farmacología , Crianza de Animales Domésticos , Animales , Peso Corporal/efectos de los fármacos , Glutatión Peroxidasa/sangre , Glutatión Transferasa/metabolismo , Isoenzimas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Especificidad de Órganos/efectos de los fármacos
20.
PLoS One ; 9(5): e98313, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24847987

RESUMEN

Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value <0.05), 20 being down-regulated and 22 being up-regulated, between the niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5) and down-regulated (log2 ratio ≤-0.5) miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through miRNA-mRNA interactions.


Asunto(s)
MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Niacina/farmacología , Complejo Vitamínico B/farmacología , Animales , Peso Corporal , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Niacina/administración & dosificación , Niacina/sangre , Niacinamida/sangre , Ácidos Nicotínicos/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/metabolismo , Ratas , Ratas Zucker , Transducción de Señal , Complejo Vitamínico B/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA