Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fitoterapia ; 170: 105647, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562490

RESUMEN

Oliveria decumbens Vent., an annual herb resistant to harsh environmental conditions, is an aromatic medicinal plant of the Apiaceae family. O. decumbens has numerous pharmacological, food and feed, and cosmetic applications. This species is endemic to Iran, Iraq, and Turkey. Published literature, available until 30 November 2022 on the morphology, phytochemistry, and bioactivity of O. decumbens, has been reviewed, and appraised for the potential therapeutic potential of this species, utilizing the databases, Web of Science, Google Scholar, PubMed, and Dictionary of Natural Products. The search term used was O. decumbens. Some manuscripts were issued on the chemical components of O. decumbens essential oil (EO) and various extracts. The EO of O. decumbens was evaluated for its chemical composition and medicinal potential against various diseases. Thymol and carvacrol constituted the primary oxygenated monoterpenes detected in substantial amounts within the EO. Additionally, diverse metabolites of O. decumbens were examined for their bactericidal, antioxidant, larvicidal, and immunomodulatory effects. This review article discusses morphology, phenology, and geographical distribution of O. decumbens and presents a critical appraisal of its phytochemistry and therapeutic potential as documented in the published literature.


Asunto(s)
Apiaceae , Aceites Volátiles , Plantas Medicinales , Apiaceae/química , Estructura Molecular , Aceites Volátiles/farmacología , Aceites Volátiles/química , Timol , Plantas Medicinales/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Etnofarmacología
2.
Sci Rep ; 12(1): 15837, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151202

RESUMEN

Licorice (Glycyrrhiza glabra L.) is an industrial medicinal plant that is potentially threatened by extinction. In this study, the effects of salinity (0 and 200 mM sodium chloride (NaCl)) and Azotobacter inoculation were evaluated on 16 licorice accessions. The results showed that salinity significantly reduced the fresh and dry biomass (FW and DW, respectively) of roots, compared to plants of the control group (a decrease of 15.92% and 17.26%, respectively). As a result of bacterial inoculation, the total sugar content of roots increased by 21.56% when salinity was applied, but increased by 14.01% without salinity. Salinity stress increased the content of glycyrrhizic acid (GA), phenols, and flavonoids in licorice roots by 104.6%, 117.2%, and 56.3%, respectively. Integrated bacterial inoculation and salt stress significantly increased the GA content in the accessions. Bajgah and Sepidan accessions had the highest GA contents (96.26 and 83.17 mg/g DW, respectively), while Eghlid accession had the lowest (41.98 mg/g DW). With the bacterial application, the maximum amounts of glabridin were obtained in Kashmar and Kermanshah accessions (2.04 and 1.98 mg/g DW, respectively). Bajgah and Kashmar accessions had higher amounts of rutin in their aerial parts (6.11 and 9.48 mg/g DW, respectively) when their roots were uninoculated. In conclusion, these results can assist in selecting promising licorice accessions for cultivation in harsh environments.


Asunto(s)
Azotobacter , Glycyrrhiza , Triterpenos , Flavonoides/metabolismo , Glycyrrhiza/metabolismo , Ácido Glicirrínico , Irán , Fenoles/metabolismo , Extractos Vegetales/metabolismo , Raíces de Plantas/metabolismo , Rutina , Salinidad , Estrés Salino , Cloruro de Sodio/metabolismo , Azúcares/metabolismo , Triterpenos/metabolismo
3.
Molecules ; 26(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577194

RESUMEN

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially appeared in Wuhan, China, in December 2019. Elderly individuals and those with comorbid conditions may be more vulnerable to this disease. Consequently, several research laboratories continue to focus on developing drugs to treat this infection because this disease has developed into a global pandemic with an extremely limited number of specific treatments available. Natural herbal remedies have long been used to treat illnesses in a variety of cultures. Modern medicine has achieved success due to the effectiveness of traditional medicines, which are derived from medicinal plants. The objective of this study was to determine whether components of natural origin from Iranian medicinal plants have an antiviral effect that can prevent humans from this coronavirus infection using the most reliable molecular docking method; in our case, we focused on the main protease (Mpro) and a receptor-binding domain (RBD). The results of molecular docking showed that among 169 molecules of natural origin from common Iranian medicinal plants, 20 molecules (chelidimerine, rutin, fumariline, catechin gallate, adlumidine, astragalin, somniferine, etc.) can be proposed as inhibitors against this coronavirus based on the binding free energy and type of interactions between these molecules and the studied proteins. Moreover, a molecular dynamics simulation study revealed that the chelidimerine-Mpro and somniferine-RBD complexes were stable for up to 50 ns below 0.5 nm. Our results provide valuable insights into this mechanism, which sheds light on future structure-based designs of high-potency inhibitors for SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Fitoquímicos/uso terapéutico , Inhibidores de Proteasa Viral/química , Antivirales/farmacología , Simulación por Computador , Humanos , Irán , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Fitoquímicos/metabolismo , Plantas Medicinales/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Termodinámica , Inhibidores de Proteasa Viral/metabolismo , Inhibidores de Proteasa Viral/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA