RESUMEN
Cell compartmentalization is an essential process by which eukaryotic cells separate and control biological processes. Although calmodulins are well-known to regulate catalytic properties of their targets, we show here their involvement in the subcellular location of two plant proteins. Both proteins exhibit a dual location, namely in the cytosol in addition to their association to plastids (where they are known to fulfil their role). One of these proteins, ceQORH, a long-chain fatty acid reductase, was analyzed in more detail, and its calmodulin-binding site was identified by specific mutations. Such a mutated form is predominantly targeted to plastids at the expense of its cytosolic location. The second protein, TIC32, was also shown to be dependent on its calmodulin-binding site for retention in the cytosol. Complementary approaches (bimolecular fluorescence complementation and reverse genetics) demonstrated that the calmodulin isoform CAM5 is specifically involved in the retention of ceQORH in the cytosol. This study identifies a new role for calmodulin and sheds new light on the intriguing CaM-binding properties of hundreds of plastid proteins, despite the fact that no CaM or CaM-like proteins were identified in plastids.
Asunto(s)
Proteínas de Arabidopsis/genética , Calmodulina/genética , Compartimento Celular/genética , Proteínas de Cloroplastos/genética , Proteínas de la Membrana/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Sitios de Unión/genética , Señalización del Calcio/genética , Calmodulina/química , Proteínas de Cloroplastos/química , Cloroplastos/química , Cloroplastos/genética , Citosol/química , Proteínas de la Membrana/química , Plastidios/química , Plastidios/genética , Unión Proteica/genéticaRESUMEN
Ca(2+)/Calmodulin (CaM)-dependent signaling pathways play a major role in the modulation of cell responses in eukaryotes. In the chloroplast, few proteins such as the NAD(+) kinase 2 have been previously shown to interact with CaM, but a general picture of the role of Ca(2+)/CaM signaling in this organelle is still lacking. Using CaM-affinity chromatography and mass spectrometry, we identified 210 candidate CaM-binding proteins from different Arabidopsis and spinach chloroplast sub-fractions. A subset of these proteins was validated by an optimized in vitro CaM-binding assay. In addition, we designed two fluorescence anisotropy assays to quantitatively characterize the binding parameters and applied those assays to NAD(+) kinase 2 and selected candidate proteins. On the basis of our results, there might be many more plastidial CaM-binding proteins than previously estimated. In addition, we showed that an array of complementary biochemical techniques is necessary in order to characterize the mode of interaction of candidate proteins with CaM.