RESUMEN
Eutrophication is one of the environmental problems arising from the increase of essential nutrient concentrations, mainly phosphorus and nitrogen. In contrast to excess phosphorus, the depletion of phosphate rock deposits used for the production of fertilizers compromises the food supply. Therefore, the development of technologies that propose the recovery of the phosphorus contained in eutrophic environments for its later use for agricultural fertilization purposes is very important to ensure global food security. This work aimed to evaluate the toxic potential of the sawdust (biosorbent previously used for phosphorus adsorption) in order to enable its application in agriculture. For this, toxicity experiments with Lactuca sativa (lettuce) and Allium cepa (onion) seeds were performed. The phytotoxic potential was assessed by means of the seed germination index and physiological parameters such as radicle and hypocotyl growth. Cytotoxicity, genotoxicity, and mutagenicity tests were also performed on onion seeds. From statistical tests, it was possible to affirm that the sawdust did not promote inhibition of seed germination and radicle and hypocotyl growth. No genotoxicity, cytotoxicity and, mutagenicity were observed, which allowed to state that the sawdust is not toxic to the onion species, which reinforces the possibility of application of the biosorbent for soil fertilization purposes. Therefore, the use of sawdust for phosphorus biosorption with the subsequent agricultural application is promising and quite important from a global food security point of view.
Asunto(s)
Lactuca , Cebollas , Fertilizantes , Germinación , Fósforo , SueloRESUMEN
Freshwater resources are increasingly scarce due to human activities, and the understanding of water quality variations at different spatial and temporal scales is necessary for adequate management. Here, we analyze the hypotheses that (1) the presence of a wastewater treatment plant (WWTP) and (2) a polluted tributary that drains downstream from the WWTP change the spatial patterns of physicochemical variables (pH, turbidity, dissolved oxygen, and electrical conductivity) and nutrient concentrations (reactive soluble phosphorus, total phosphorus, nitrogen series, total nitrogen, and total dissolved carbon) along a mid-order river in SE Brazil and that these effects depend on rainfall regime. Six study sites were sampled along almost 4 years to evaluate the impacts of human activities, including sites upstream (1-3) and downstream (5-6) from the WWTP. The impacts were observed presenting an increasing trend from the source (site 1) towards Água Quente stream (site 4, the polluted tributary), with signs of attenuation at site 5 (downstream from both WWTP and site 4) and the river mouth (site 6). Input of nutrients by rural and urban runoff was observed mainly at sites 2 and 3, respectively. At sites 4 and 5, the inputs of both untreated and treated wastewaters increased nutrient concentrations and changed physicochemical variables, with significant impacts to Monjolinho River. Seasonal variations in the measured values were also observed, in agreement with the pluviometric indexes of the region. Univariate analyses suggested no effect of the WWTP for most variables, with continued impacts at sites downstream, but non-parametric multivariate analysis indicated that these sites were recovering to chemical characteristics similar to upstream sites, apparently due to autodepuration. Therefore, multivariate methods that allow rigorous tests of multifactor hypotheses can greatly contribute to determine effects of both point and non-point sources in river systems, thus contributing to freshwater monitoring and management.
Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/normas , Calidad del Agua , Brasil , Humanos , Análisis Multivariante , Nitrógeno/análisis , Fósforo/análisis , Estaciones del Año , Urbanización , Aguas Residuales/análisis , Purificación del Agua/métodosRESUMEN
Fipronil is a phenylpyrazole pesticide widely used to protect sugar-cane crops from insect pests. After reaching the environment, this insecticide may have several fates. This research aimed to propose a kinetic model to describe the fate of commercial fipronil Regent 800WG in the sediment-water interface of the Oleo Lagoon in the Mogi-Guaçu river floodplain, situated within the Jataí Ecological Station, by means of a microcosm scale experiment. Results showed that a small fraction of the pesticide is quickly dragged to the sediment while most of it remains in the water column. Biodegradation proves to be an important fipronil degradation route, especially when microorganisms capable of using fipronil as sole carbon source increase their population, as a function of exposure time. Biodegradation rates were higher in the sediment than in the water column.