Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2023: 5782656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324654

RESUMEN

There is an increase in mortality and morbidity in the health facilities due to nosocomial infections caused by multidrug-resistant nosocomial bacteria; hence, there is a need for new antibacterial agents. Vernonia adoensis has been found to possess medicinal value. Plant phytochemicals may have antimicrobial activity against some resistant pathogens. The antibacterial efficacy of root extracts against Staphylococcus aureus and Pseudomonas aeruginosa was investigated using the microbroth dilution method. All extracts from the roots had an inhibitory effect on the growth of both bacteria, with the most susceptible being P. aeruginosa. The most potent extract was the ethyl acetate extract which caused a percentage inhibition of 86% against P. aeruginosa. The toxicity of the extract was determined on sheep erythrocytes, and its effect on membrane integrity was determined by quantifying the amount of protein and nucleic acid leakage from the bacteria. The lowest concentration of extract used, which was 100 µg/ml, did not cause haemolysis of the erythrocytes, while at 1 mg/ml of the extract, 21% haemolysis was observed. The ethyl acetate extract caused membrane impairment of P. aeruginosa, leading to protein leakage. The effect of the extract on the biofilms of P. aeruginosa was determined in 96-microwell plates using crystal violet. In the concentration range of 0-100 µg/ml, the extract inhibited the formation of biofilms and decreased the attachment efficiency. The phytochemical constituents of the extract were determined using gas chromatography-mass spectrometry. Results of analysis showed the presence of 3-methylene-15-methoxy pentadecanol, 2-acetyl-6-(t-butyl)-4-methylphenol, 2-(2,2,3,3-tetrafluoropropanoyl) cyclohexane-1,4-dione, E,E,Z-1,3,12-nonadecatriene-5,14-diol, and stigmasta-5,22-dien-3-ol. Fractionation and purification will elucidate the potential antimicrobial compounds which are present in the roots of V. adoensis.


Asunto(s)
Antiinfecciosos , Vernonia , Animales , Ovinos , Pseudomonas aeruginosa , Vernonia/química , Hemólisis , Extractos Vegetales , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Biopelículas , Fitoquímicos/farmacología
2.
BMC Complement Altern Med ; 19(1): 249, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492140

RESUMEN

BACKGROUND: Bacteria have developed resistance to most of the current antibiotics. There is evidence suggesting that plant-derived compounds have a potential for interacting with biological processes. One of the plants commonly used in African ethnomedicine is Vernonia adoensis from the Asteraceae family. The leaves of the plant have been reported to have antimicrobial activity. Hence, the aim of this study was to isolate the bioactive compounds from the leaf extract and evaluate their antibacterial activity on Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. In addition, the effect of the isolated compound on biofilms of P. aeruginosa was determined. METHODS: Isolation of phytochemicals from the leaves of V. adoensis was done using column chromatography. Preparative TLC was used to further isolate mixed compounds in the fractions. Nuclear magnetic resonance spectroscopy and mass spectrometry was used to identify the isolated pure compounds. The broth microdilution assay was carried out to evaluate the antibacterial activity of the isolated compound on P. aeruginosa, S. aureus and K. pneumoniae. Crystal violet staining technique was used to evaluate the effect of the isolated compound on biofilms of P. aeruginosa. RESULTS: The compound isolated from V. adoensis was identified as chondrillasterol. Chondrillasterol exhibited 25, 38 and 65% inhibition of growth on S. aureus, K. pneumoniae and P. aeruginosa respectively. At 1.6 µg/mL chondrillasterol completely disrupted mature biofilm of P. aeruginosa while at 100 µg/mL the compound completely inhibited formation of biofilms of the bacteria. CONCLUSION: Chondrillasterol isolated from V. adoensis has antibacterial properties against S. aureus, K. pneumoniae and P. aeruginosa. The compound also has biofilm inhibition and disruption activity against P. aeruginosa biofilms. Thus, the active phytochemical could be a useful template for the development of new antimicrobial agents with both antibacterial and antibiofilm activity.


Asunto(s)
Antibacterianos/farmacología , Extractos Vegetales/farmacología , Esteroides/farmacología , Vernonia/química , Antibacterianos/análisis , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Biopelículas/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/análisis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Esteroides/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA