Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 34(9): 13033-13048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32777136

RESUMEN

The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide indicates the urgent need to develop novel and effective treatment strategies. Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has an outstanding effect in improving metabolism. However, the pharmacological action and mechanism of BA in NAFLD remain unclear. Here, we show that BA-treated high-fat diet mice and methionine-choline deficient diet-fed mice are resistant to hepatic steatosis when compared with vehicle-treated mice. BA alleviates fatty acid synthesis, fibrosis, and inflammation and promotes fatty acid oxidation. Meanwhile, fatty acid synthase (FAS) expression and activity are markedly inhibited with BA treatment both in vitro and in vivo. Moreover, BA inhibits FAS expression through transcriptional suppression of Yin Yang 1 (YY1), leading to retard hepatocytes triglyceride accumulation. Collectively, BA protects hepatocytes from abnormal lipid deposition in NAFLD through YY1/FAS pathway. Our findings establish a novel role of BA in representing a possible therapeutic strategy to reverse NAFLD.


Asunto(s)
Acido Graso Sintasa Tipo I/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Triterpenos Pentacíclicos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Factor de Transcripción YY1/metabolismo , Animales , Ácidos Grasos/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Betulínico
2.
Chin J Integr Med ; 25(11): 853-860, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26142340

RESUMEN

OBJECTIVE: To investigate apoptotic effects of berberine, a significant alkaloids component existing in Rhizoma coptidis, and its possible acting mechanism in insulinoma cells. METHODS: Different concentrations of berberine were used to treat mouse insulinoma (MIN6) cells for various period of time. The viability and apoptosis of the cells were analyzed using methylthiazolyldiphenvl-tetrazolium bromide assay, flow cytometry and enzyme-linked immuno sorbent assay. Changes in the relating pro- and anti-apoptosis proteins were detected by western-blotting. RESULTS: The half-maximal inhibitory concentration (IC50) of berberine was 5.7 µmol/L on MIN6 cells viability for 16 h. Berberine caused a 20% reduction (P<0.05) in cell number after only 4-h incubation; which reached 50% after 24 h (P<0.01). Berberine treatment for 16 h significantly increased the level of DNA fragmentation. The flow cytometry showed the apoptotic rate increased 2.9- and 4.6-fold after treating with berberine (5 µmol/L) for 8 and 16 h, while 3- and 8.7-fold after 10 µmol/L treatment for 8 and 16 h (P<0.01). Berberine treatment dramatically elevated the expression ratio of Bax to Bcl-2. Meanwhile, berberine notably increased the apoptosis-inducing factors and cytochrome C transforming from the mitochondria to the cytoplasm. Apoptotic protease-activating factor 1 (Apaf-1) was subsequently activated after cytochrome C release. Furthermore, caspase-3 and poly adenosine diphosphate-ribose polymerase were also activated to trigger apoptosis cascade. CONCLUSION: High concentration (5 and 10 µmol/L) of berberine could induce the apoptosis of MIN6 cells through cytochrome C/Apaf-1/caspase-3 and apoptosis inducing factor (AIF) pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Berberina/farmacología , Insulinoma/patología , Neoplasias Pancreáticas/patología , Animales , Factor Inductor de la Apoptosis/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Insulinoma/metabolismo , Ratones , Neoplasias Pancreáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
3.
Onco Targets Ther ; 11: 1767-1776, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662316

RESUMEN

BACKGROUND: CD19-chimericantigen receptor (CAR) modified T cells (CD19-CAR T cells) have been well documented to possess potent anti-tumor properties against CD19-expressingleukemia cells. As a traditional medicine, metformin has been widely used to treat type II diabetes mellitus and more recently has become a candidate for the treatment of cancer. However, no report has revealed the direct effect of metformin on CD19-CAR T cell biological function and its underling mechanisms. PURPOSE: The purpose of this research was to explore the effect of metformin on CD19-CAR T cell biological function and the mechanisms involved. METHODS: CD19-CAR T cells proliferation, apoptosis and cytotoxicity were mainly tested by CCK-8 assay, flow cytometry and ELISA. The detection of mechanism primarily used western blot. Bioluminescence imaging is the main application technology of animal studies. RESULTS: In the current study, it was found that metformin inhibited CD19-CAR T cell proliferation and cytotoxicity and induced apoptosis. Furthermore, our study revealed that metformin activated AMPK and suppressed mTOR and HIF1α expression. By using an AMPK inhibitor, compound C, we demonstrated the crucial roles of AMPK in CD19-CAR T cells when they were treated with metformin. Finally, we verified that metformin suppressed the cytotoxicity of CD19-CAR T cell in vivo. CONCLUSION: Taken together, these results indicated that metformin may play an important role in modulating CD19-CAR T cell biological functions in an AMPK-dependent and mTOR/HIF1α-independent manner.

4.
Artículo en Inglés | MEDLINE | ID: mdl-27642358

RESUMEN

Nephrotoxicity is a frequent severe side effect of cisplatin chemotherapy, limiting its clinical use despite being one of the most potent chemotherapy drugs. Dihydromyricetin is a highly abundant compound purified from the leaves of Ampelopsis grossedentata. Previous studies have demonstrated the anti-inflammatory and antioxidative effects of Dihydromyricetin both in vitro and in vivo, but little is known about the effects of Dihydromyricetin on cisplatin-induced nephrotoxicity and its underlying mechanisms. In the present study, we investigated its potential renoprotective effect and found that Dihydromyricetin ameliorated the renal functional impairment and structural damage caused by cisplatin. Moreover, Dihydromyricetin markedly attenuated cisplatin-induced oxidative stress, as well as protecting against cisplatin-induced inflammation and apoptotic cell death in mouse kidney tissues. These results collectively highlight the potential of DMY as a rational renoprotective agent against cisplatin.

5.
Artículo en Inglés | MEDLINE | ID: mdl-27418937

RESUMEN

In the present study, the hypoglycemic, hypolipidemic, and antioxidative effects of metformin (MET) combined with Jiang Tang Xiao Ke (JTXK) granule derived from the "Di Huang Tang" were evaluated in mice with type 2 diabetes mellitus (DM) induced by high-fat diet/streptozotocin. DM mice were orally treated with MET (0.19 g/kg) either alone or combined with different doses (1.75, 3.5, or 7 g/kg) of JTXK for 4 weeks. Results showed that the serum and hepatic glucose, lipids, and oxidative stress levels were elevated in DM mice, when compared with the normal mice. MET treatment decreased FBG and serum glucagon levels of DM mice. Combination treatment with MET and JTXK 3.5 g/kg increased the hypoglycemia and insulin sensitivity at 4 weeks when compared with the DM mice treated with MET alone. However, neither MET nor MET/JTXK treatment could completely reverse the hyperglycemia in DM mice. JTXK enhanced the serum triglyceride (TG) and hepatic lipid-lowering effect of MET in a dose-dependent manner in DM mice. JTXK 1.75 and 3.5 g/kg improved the hepatoprotective effect of MET in DM mice. Synergistic effect of combination treatment with MET and JTXK on antioxidant stress was also found in DM mice compared with MET alone.

6.
Artículo en Inglés | MEDLINE | ID: mdl-25089145

RESUMEN

Diabetes mellitus (DM), a kind of metabolic disease, is increasing over the last four decades in the world. The purpose of this study was to investigate the effect of Jiang Tang Xiao Ke (JTXK) granule, a naturally occurring ingredient from Chinese herbal medicines, on serum glucose, lipids, and oxidative stress in DM rats induced by high-fat diet and streptozotocin. JTXK granule 9 g/kg (based on crude herb equivalent) and pioglitazone 1.5 mg/kg (as a positive control for comparison) were orally administrated to DM rats for 4 weeks. Results showed that administration of JTXK granule reduced serum glucose, total cholesterol, triglyceride, and low density lipoprotein levels (by 12%, 33%, 57%, and 44%, resp.) but increased high-density lipoprotein level by 69%, compared with the drug-untreated DM rats. Serum malondialdehyde and nitric oxide levels were lowered (by 34% and 52%, resp.) associated with the elevation in serum superoxide dismutase levels (by 60%) after JTXK granule treatment. In addition, JTXK granule suppressed serum alanine aminotransferase activity (up to 50%) and alleviated pathological changes of pancreas and liver tissues in DM rats. The beneficial changes of pioglitazone on biomarkers were also found in DM rats. These findings suggested that JTXK granule may be an alternative medicine for the management of DM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA