Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mater Chem B ; 8(27): 5892-5902, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538419

RESUMEN

The distinguished property of the physiological polymer, inorganic polyphosphate (polyP), is to act as a bio-intelligent material which releases stimulus-dependent metabolic energy to accelerate wound healing. This characteristic is based on the bio-imitating feature of polyP to be converted, upon exposure to peptide-containing body fluids, from stable amorphous nanoparticles to a physiologically active and energy-delivering coacervate phase. This property of polyP has been utilized to fabricate a wound mat consisting of compressed collagen supplemented with amorphous polyP particles, formed from the inorganic polyanion with an over-stoichiometric ratio of zinc ions. The proliferation and the migration of human skin keratinocytes in those matrices were investigated. If the cells were embedded into the mat they respond with a significantly higher motility when zinc-polyP particles are present. Interestingly, only keratinocytes that were grown in a polyP environment developed well-structured microvilli, reflecting an increased biological activity. The data show that Zn-polyP particles incorporated into wound mats are a potent cell growth and cell migration-stimulating inorganic bio-material.


Asunto(s)
Colágeno/química , Nanopartículas/química , Polielectrolitos/química , Polifosfatos/química , Zinc/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Vendajes de Compresión , Epidermis/efectos de los fármacos , Humanos , Queratinocitos/citología , Polielectrolitos/metabolismo , Polifosfatos/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Zinc/metabolismo
2.
Molecules ; 25(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438652

RESUMEN

There is a strong interest in cement additives that are able to prevent or mitigate the adverse effects of cracks in concrete that cause corrosion of the reinforcement. Inorganic polyphosphate (polyP), a natural polymer that is synthesized by bacteria, even those on cement/concrete, can increase the resistance of concrete to progressive damage from micro-cracking. Here we use a novel bioinspired strategy based on polyP-stabilized amorphous calcium carbonate (ACC) to give this material self-healing properties. Portland cement was supplemented with ACC nanoparticles which were stabilized with 10% (w/w) Na-polyP. Embedding these particles in the hydrated cement resulted in the formation of calcite crystals after a hardening time of 10 days, which were not seen in controls, indicating that the particles dissolve and then transform into calcite. While there was no significant repair in the controls without ACC, almost complete closure of the cracks was observed after a 10 days healing period in the ACC-supplemented samples. Nanoindentation measurements on the self-healed crack surfaces showed a similar or slightly higher elasticity at a lower hardness compared to non-cracked surfaces. Our results demonstrate that bioinspired approaches, like the use of polyP-stabilized ACC shown here, can significantly improve the repair capacity of Portland cement.


Asunto(s)
Carbonato de Calcio/química , Cementos de Ionómero Vítreo/química , Nanopartículas/química , Polifosfatos/química , Carbonato de Calcio/farmacología , Materiales de Construcción , Polifosfatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA