Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373021

RESUMEN

Despite a major threat to the public health in tropical and subtropical regions, dengue virus (DENV) infections are untreatable. Therefore, efforts are needed to investigate cost-effective therapeutic agents that could cure DENV infections in future. The NS2B-NS3 protease encoded by the genome of DENV is considered a critical target for the development of anti-dengue drugs. The objective of the current study was to find out a specific inhibitor of the NS2B-NS3 proteases from all four serotypes of DENV. To begin with, nine plant extracts with a medicinal history were evaluated for their role in inhibiting the NS2B-NS3 proteases by Fluorescence Resonance Energy Transfer (FRET) assay. Among the tested extracts, Punica granatum was found to be the most effective one. The metabolic profiling of this extract revealed the presence of several active compounds, including ellagic acid, punicalin and punicalagin, which are well-established antiviral agents. Further evaluation of IC50 values of these three antiviral molecules revealed punicalagin as the most potent anti-NS2B-NS3 protease drug with IC50 of 0.91 ± 0.10, 0.75 ± 0.05, 0.42 ± 0.03, 1.80 ± 0.16 µM against proteases from serotypes 1, 2, 3 and 4, respectively. The docking studies demonstrated that these compounds interacted at the active site of the enzyme, mainly with His and Ser residues. Molecular dynamics simulations analysis also showed the structural stability of the NS2B-NS3 proteases in the presence of punicalagin. In summary, this study concludes that the punicalagin can act as an effective inhibitor against NS2B-NS3 proteases from all four serotypes of DENV.Communicated by Ramaswamy H. Sarma.

2.
Molecules ; 26(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065194

RESUMEN

Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 µM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 µM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.


Asunto(s)
Acetamidas/síntesis química , Acetamidas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Tiazinas/química , Tiazinas/farmacología , Acetamidas/química , Acetamidas/uso terapéutico , Simulación por Computador , Diabetes Mellitus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazinas/síntesis química
3.
J Chem Inf Model ; 57(2): 203-213, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28117584

RESUMEN

The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N2O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N2O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.


Asunto(s)
Desnitrificación/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Nitrito Reductasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA