Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(1): 566-577, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36563339

RESUMEN

Magnetotactic bacteria Magnetospirillum magneticum AMB-1 have been cultured using three different media: magnetic spirillum growth medium with Wolfe's mineral solution (MSGM + W), magnetic spirillum growth medium without Wolfe's mineral solution (MSGM - W), and flask standard medium (FSM). The influence of the culture medium on the structural, morphological, and magnetic characteristics of the magnetosome chains biosynthesized by these bacteria has been investigated by using transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. All bacteria exhibit similar average size for magnetosomes, 40-45 nm, but FSM bacteria present slightly longer subchains. In MSGM + W bacteria, Co2+ ions present in the medium substitute Fe2+ ions in octahedral positions with a total Co doping around 4-5%. In addition, the magnetic response of these bacteria has been thoroughly studied as functions of both the temperature and the applied magnetic field. While MSGM - W and FSM bacteria exhibit similar magnetic behavior, in the case of MSGM + W, the incorporation of the Co ions affects the magnetic response, in particular suppressing the Verwey (∼105 K) and low temperature (∼40 K) transitions and increasing the coercivity and remanence. Moreover, simulations based on a Stoner-Wolhfarth model have allowed us to reproduce the experimentally obtained magnetization versus magnetic field loops, revealing clear changes in different anisotropy contributions for these bacteria depending on the employed culture medium. Finally, we have related how these magnetic changes affect their heating efficiency by using AC magnetometric measurements. The obtained AC hysteresis loops, measured with an AC magnetic field amplitude of up to 90 mT and a frequency, f, of 149 kHz, reveal the influence of the culture medium on the heating properties of these bacteria: below 35 mT, MSGM - W bacteria are the best heating mediators, but above 60 mT, FSM and MSGM + W bacteria give the best heating results, reaching a maximum heating efficiency or specific absorption rate (SAR) of SAR/f ≈ 12 W g-1 kHz-1.


Asunto(s)
Hipertermia Inducida , Magnetosomas , Magnetospirillum , Magnetospirillum/química , Magnetospirillum/metabolismo , Magnetosomas/química , Fenómenos Magnéticos
2.
Small ; 15(41): e1902626, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31454160

RESUMEN

Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.


Asunto(s)
Hipertermia Inducida , Campos Magnéticos , Magnetospirillum/fisiología , Células A549 , Supervivencia Celular , Fluorescencia , Humanos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/ultraestructura , Magnetosomas/química , Magnetosomas/ultraestructura , Magnetospirillum/ultraestructura , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA