Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
2.
Allergy ; 76(8): 2367-2382, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866585

RESUMEN

Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small-molecule ligands. Ligand-binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds. Pollen and plant food allergens of the family 10 of pathogenesis-related proteins bind a variety of small molecules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in vitro. However, their natural ligand binding was reported to be highly specific. Insect and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty acids with a similar level of specificity, while the food allergen ß-lactoglobulin from cow's milk is notably more promiscuous. Non-specific lipid transfer proteins from pollen and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility displayed by their lipid-binding cavities. Ligands increase the stability of allergens to thermal and/or proteolytic degradation. They can also act as immunomodulatory agents that favor a Th2 polarization. In summary, ligand-binding allergens expose the immune system to a variety of biologically active compounds whose impact on the sensitization process has not been well studied thus far.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Alérgenos/metabolismo , Animales , Bovinos , Femenino , Ligandos , Polen , Unión Proteica
4.
Allergy ; 74(12): 2382-2393, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31230350

RESUMEN

BACKGROUND: Over 100 million people worldwide suffer from birch pollen allergy. Bet v 1 has been identified as the major birch pollen allergen. However, the molecular mechanisms of birch allergic sensitization, including the roles of Bet v 1 and other components of the birch pollen extract, remain incompletely understood. Here, we examined how known birch pollen-derived molecules influence the endolysosomal processing of Bet v 1, thereby shaping its allergenicity. METHODS: We analyzed the biochemical and immunological interaction of ligands with Bet v 1. We then investigated the proteolytic processing of Bet v 1 by endosomal extracts in the presence and absence of ligands, followed by a detailed kinetic analysis of Bet v 1 processing by individual endolysosomal proteases as well as the T-cell epitope presentation in BMDCs. RESULTS: We identified E1 phytoprostanes as novel Bet v 1 ligands. Pollen-derived ligands enhanced the proteolytic resistance of Bet v 1, affecting degradation kinetics and preferential cleavage sites of the endolysosomal proteases cathepsin S and legumain. E1 phytoprostanes exhibited a dual role by stabilizing Bet v 1 and inhibiting cathepsin protease activity. CONCLUSION: Bet v 1 can serve as a transporter of pollen-derived, bioactive compounds. When carried to the endolysosome, such compounds can modulate the proteolytic activity, including its processing by cysteine cathepsins. We unveil a paradigm shift from an allergen-centered view to a more systemic view that includes the host endolysosomal enzymes.


Asunto(s)
Alérgenos/inmunología , Antígenos de Plantas/inmunología , Endosomas/enzimología , Péptido Hidrolasas/metabolismo , Basófilos/inmunología , Basófilos/metabolismo , Betula/inmunología , Degranulación de la Célula/inmunología , Activación Enzimática , Humanos , Inmunoglobulina E/inmunología , Ligandos , Polen/inmunología , Unión Proteica , Proteínas Recombinantes
5.
J Biol Chem ; 289(31): 21374-85, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24939849

RESUMEN

Cyclophilin (Cyp) allergens are considered pan-allergens due to frequently reported cross-reactivity. In addition to well studied fungal Cyps, a number of plant Cyps were identified as allergens (e.g. Bet v 7 from birch pollen, Cat r 1 from periwinkle pollen). However, there are conflicting data regarding their antigenic/allergenic cross-reactivity, with no plant Cyp allergen structures available for comparison. Because amino acid residues are fairly conserved between plant and fungal Cyps, it is particularly interesting to check whether they can cross-react. Cat r 1 was identified by immunoblotting using allergic patients' sera followed by N-terminal sequencing. Cat r 1 (∼ 91% sequence identity to Bet v 7) was cloned from a cDNA library and expressed in Escherichia coli. Recombinant Cat r 1 was utilized to confirm peptidyl-prolyl cis-trans-isomerase (PPIase) activity by a PPIase assay and the allergenic property by an IgE-specific immunoblotting and rat basophil leukemia cell (RBL-SX38) mediator release assay. Inhibition-ELISA showed cross-reactive binding of serum IgE from Cat r 1-allergic individuals to fungal allergenic Cyps Asp f 11 and Mala s 6. The molecular structure of Cat r 1 was determined by NMR spectroscopy. The antigenic surface was examined in relation to its plant, animal, and fungal homologues. The structure revealed a typical cyclophilin fold consisting of a compact ß-barrel made up of seven anti-parallel ß-strands along with two surrounding α-helices. This is the first structure of an allergenic plant Cyp revealing high conservation of the antigenic surface particularly near the PPIase active site, which supports the pronounced cross-reactivity among Cyps from various sources.


Asunto(s)
Alérgenos/química , Ciclofilinas/química , Polen/química , Adulto , Alérgenos/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Estudios de Casos y Controles , Línea Celular Tumoral , Dicroismo Circular , Reacciones Cruzadas , Ciclofilinas/inmunología , Cartilla de ADN , ADN Complementario , Femenino , Humanos , Hipersensibilidad/inmunología , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Polen/inmunología , Ratas , Homología de Secuencia de Aminoácido , Adulto Joven
6.
Nucleic Acids Res ; 40(7): 2974-83, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22169953

RESUMEN

Binding of the catalytic divalent ion to the ternary DNA polymerase ß/gapped DNA/dNTP complex is thought to represent the final step in the assembly of the catalytic complex and is consequently a critical determinant of replicative fidelity. We have analyzed the effects of Mg(2+) and Zn(2+) on the conformational activation process based on NMR measurements of [methyl-(13)C]methionine DNA polymerase ß. Unexpectedly, both divalent metals were able to produce a template base-dependent conformational activation of the polymerase/1-nt gapped DNA complex in the absence of a complementary incoming nucleotide, albeit with different temperature thresholds. This conformational activation is abolished by substituting Glu295 with lysine, thereby interrupting key hydrogen bonds necessary to stabilize the closed conformation. These and other results indicate that metal-binding can promote: translocation of the primer terminus base pair into the active site; expulsion of an unpaired pyrimidine, but not purine, base from the template-binding pocket; and motions of polymerase subdomains that close the active site. We also have performed pyrophosphorolysis studies that are consistent with predictions based on these results. These findings provide new insight into the relationships between conformational activation, enzyme activity and polymerase fidelity.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Zinc/química , Sustitución de Aminoácidos , Transporte Biológico , Cationes Bivalentes/química , ADN/metabolismo , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Activación Enzimática , Calor , Magnesio/química , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA