Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Ethnopharmacol ; 321: 117498, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030021

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Iris Kashmiriana Baker, a traditional medicinal plant, is native to Asia, found in India, Nepal, Afghanistan, Pakistan, as name indicates majorly it's found in Kashmir region of India. Ethnopharmacologically this plant has been used there for the management of joint pain, but there was no scientific literature available. This species also comes under critically endangered species. AIM OF THE STUDY: The current study aims to evaluate the effect of Iris kashmiriana Baker against nociception and rheumatoid arthritis in experimental rats with In-silico model. MATERIAL AND METHODS: Various extracts of the plant were investigated for their in-vitro antioxidant activity. Acute inflammation and FCA induced in rat model, then acetic acid-induced writhing in mice were used. These anti-rheumatic results were justified by the computational method. RESULTS: The total phenolic and flavonoid concentration of HE extracts were found to be 95.30 ± 2.80 mg/g and 18.18 ± 5.88 mg/g respectively. IC50 and maximum inhibition of HE extracts against DPPH and H2O2 were also effective. Among different doses, 400 mg/kg of HE extracts showed significant (p<0.001) reduction in acute inflammation (16.42 %), in analgesic activity, the HE extract was found statistically (p<0.001) reduced (60.15 %) and in arthritis model, maximum inflammation reduced (25.9%) was found with hydro ethanol extract and statistical significant (p<0.001). and the paw thickness was reduced (27.4 %). Antioxidant activity of HE extract was found to be optimum (37.01%, p<0.001), Superoxide dismutase concentration was found to be optimum (65.12%, p<0.001). In Histopathology, HE 400 mg/kg showed mild inflammation only. The weight of the thymus and spleen were also determined and the HE 400 mg/kg extract inhibited the increase in weight of these organs compared with positive group (28.26 %, and 25.11 %), respectively. CONCLUSION: Among all the different extracts and various doses, the iris kashmiriana Baker hydro-ethanolic (60:40) 400 mg/kg extract showed the best response among all different extracts.


Asunto(s)
Artritis Reumatoide , Extractos Vegetales , Ratas , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Nocicepción , Peróxido de Hidrógeno , Analgésicos/farmacología , Analgésicos/uso terapéutico , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Etanol/uso terapéutico , Pakistán
2.
Artículo en Inglés | MEDLINE | ID: mdl-37592791

RESUMEN

Background Mucuna giganteais a traditional plant reported in the management of nervous disorders, male infertility, etc., and also exhibits aphrodisiac, anti-oxidant, and anti-diabetic properties. Very few studies are conducted on Mucuna gigantea. It has not been pharmacologically evaluated for rheumatoid arthritis (RA). In RA, the body's natural defence mechanism gets confused and begins to target the healthy tissues in the body, which leads to joint pain, swelling, bone erosion, and joint stiffness. It is a condition that is classified as an auto-immune disorder. Methods In-silico docking depicted that beta-sitosterol is present in Mucuna gigantea out of ligand library prepared based on a literature survey using computational analysis. Inflammation was induced by carrageen and chronic inflammation was induced by Freund's complete adjuvant in the plantar surface of the rats. The petroleum ether, ethanolic and aqueous extracts in three divided doses (75, 150, and 300 mg/kg) were administered orally. Diclofenac sodium (10 mg/kg), prednisolone (5 mg/kg), and methotrexate (0.5 mg/kg) were used as standard. The statistical significance between means was analyzed using one-way ANOVA, followed by Dunnett's multiple range test. The values are expressed as mean ± SD for each group (n=6), and aP<0.0001, bP<0.001, and cP<0.05 were compared with a negative control group. Results Ethanolic and petroleum ether extracts showed a statistically significant aP<0.0001 effect at 3hr with 300mg/kg effect in analgesic activity, whereas aqueous extracts showed statistically significant aP<0.0001 effect at 1.5hr with 150 and 300mg/kg. In the carrageen-induced model, all three extracts at 300 mg/kg showed a statistically significant aP<0.0001 effect from 2- 4hr. In Freund's adjuvant model, all three extracts at all doses showed a statistically significant aP<0.0001 effect. Also, Mucuna gigantea remarkably ameliorated altered WBCs, rheumatoid factor, and positively modified radiographic and histopathological changes. Conclusion Taken together, these results support the traditional use of Mucuna gigantea as a potent anti-inflammatory and anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.

3.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513820

RESUMEN

The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.

4.
Chem Biodivers ; 20(2): e202201038, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36644820

RESUMEN

Stress is the body's reaction to the challenges it faces, and it produces a multitude of chemical molecules known as stressors as a result of these reactions. It's also a misalignment of the sympathetic and parasympathetic nervous systems causing changes in a variety of physiological reactions and perhaps leading to stress disorders. The reduction in neurotransmitter & neurohormonal hormones is mainly governed by the nociceptin receptor as G-protein coupled receptor and increased the level of reactive oxygen species. Various synthetic medicines that target nociceptin receptors were utilized to reduce the effects of stress but they come up with a variety of side effects. Because of the widespread utilization and renewed interest in medicinal herbal plants considered to be alternative antistress therapy. Our present work is an approach to decipher the molecular nature of novel herbal leads by targeting nociceptin receptor, under which herbal compounds were screened and validated through in-silico methods. Among screened leads, withanolide-B showed stable association in the active site of the nociceptin receptor as an antistress agent with no side effects. Furthermore, the selected lead was also evaluated for stability by molecular dynamic stimulation as well as for pharmacokinetics and toxicity profile. It has been concluded stable conformation of withanolide-B without presence of any major toxic effects. As a result, the in silico molecular docking technique is a highly successful method for selecting a prospective herbal lead molecule with respect to a specific target, and future research can pave the way for further exploration in the drug development field.


Asunto(s)
Plantas Medicinales , Witanólidos , Receptor de Nociceptina , Receptores Opioides , Simulación del Acoplamiento Molecular , Estudios Prospectivos
5.
J Mol Model ; 28(7): 193, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35716240

RESUMEN

Fungal infections in humans are responsible for mild to severe infections resulting in systemic effects that cause a large amount of mortality. Invasive fungal infections are having similar symptomatic effects to those of COVID-19. The COVID-19 patients are immunocompromised in nature and have a high probability of developing severe fungal infections, resulting in the development of further complications. The existing antifungal therapy has associated problems related to the development of drug resistance, being sub-potent in nature, and the presence of undesirable toxic effects. The fungal dihydrofolate reductase is an essential enzyme involved in the absorption of dietary folic acid and its conversion into tetrahydrofolate, which is a coenzyme required for the biosynthesis of the fungal nucleotides. Thus, in the current study, an attempt has been made to identify potential folate inhibitors of Candida albicans by a computational drug repurposing approach. Based upon the molecular docking simulation-based virtual screening followed by the molecular dynamic simulation of the macromolecular complex, benzbromarone has been identified as a potential anti-folate agent for the development of a novel therapy for the treatment of candidiasis.


Asunto(s)
COVID-19 , Antagonistas del Ácido Fólico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Benzbromarona/farmacología , Candida albicans , Reposicionamiento de Medicamentos , Antagonistas del Ácido Fólico/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular
6.
J Food Biochem ; 46(9): e14219, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35545850

RESUMEN

The current COVID-19 pandemic is severely threatening public healthcare systems around the globe. Some supporting therapies such as remdesivir, favipiravir, and ivermectin are still under the process of a clinical trial, it is thus urgent to find alternative treatment and prevention options for SARS-CoV-2. In this regard, although many natural products have been tested and/or suggested for the treatment and prophylaxis of COVID-19, carotenoids as an important class of natural products were underexplored. The dietary supplementation of some carotenoids was already suggested to be potentially effective in the treatment of COVID-19 due to their strong antioxidant properties. In this study, we performed an in silico screening of common food-derived carotenoids against druggable target proteins of SARS-CoV-2 including main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase. Molecular docking results revealed that some of the carotenoids had low binding energies toward multiple receptors. Particularly, crocin had the strongest binding affinity (-10.5 kcal/mol) toward the replication complex of SARS-CoV-2 and indeed possessed quite low binding energy scores for other targets as well. The stability of crocin in the corresponding receptors was confirmed by molecular dynamics simulations. Our study, therefore, suggests that carotenoids, especially crocin, can be considered an effective alternative therapeutics and a dietary supplement candidate for the prophylaxis and treatment of SARS-CoV-2. PRACTICAL APPLICATIONS: In this study, food-derived carotenoids as dietary supplements have the potential to be used for the prophylaxis and/or treatment of SARS-CoV-2. Using in silico techniques, we aimed at discovering food-derived carotenoids with inhibitory effects against multiple druggable sites of SARS-CoV-2. Molecular docking experiments against main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase resulted in a few carotenoids with multitarget inhibitory effects. Particularly, crocin as one of the main components of saffron exhibited strong binding affinities to the multiple drug targets including main protease, helicase, replication complex, mutant spike protein of lineage B.1.351, and ADP-ribose phosphatase. The stability of the crocin complexed with these drug targets was further confirmed through molecular dynamics simulations. Overall, our study provides the preliminary data for the potential use of food-derived carotenoids, particularly crocin, as dietary supplements in the prevention and treatment of COVID-19.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Adenosina Difosfato Ribosa , Productos Biológicos/farmacología , Carotenoides/farmacología , Suplementos Dietéticos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Péptido Hidrolasas/química , Monoéster Fosfórico Hidrolasas , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
7.
Assay Drug Dev Technol ; 17(7): 298-309, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31634019

RESUMEN

Multidrug resistance (MDR) is a major health issue for the treatment of infectious diseases throughout the world. Staphylococcus aureus (S. aureus) is a Gram-positive bacteria, responsible for various local and systemic infections in humans. The continuous and abrupt use of antibiotics against bacteria such as S. aureus results in the development of resistant strains. Presently, mupirocin (MUP) is the drug of choice against S. aureus and MDR (methicillin-resistant). However, S. aureus has acquired resistance against MUP as well due to isoleucyl-tRNA synthetase (IleS) mutation at sites 588 and 631. Thus, the aim of the present study was to discover novel bioactives against MUP-resistant S. aureus using in silico drug repurposing approaches. In silico drug repurposing techniques were used to obtain suitable bioactive lead molecules such as buclizine, tasosartan, emetine, medrysone, and so on. These lead molecules might be able to resolve this issue. These leads were obtained through molecular docking simulation based virtual screening, which could be promising for the treatment of MUP-resistant S. aureus. The findings of the present work need to be validated further through in vitro and in vivo studies for their clinical application.


Asunto(s)
Antibacterianos/farmacología , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antibacterianos/síntesis química , Antibacterianos/química , Emetina/síntesis química , Emetina/química , Emetina/farmacología , Humanos , Isoleucina-ARNt Ligasa/antagonistas & inhibidores , Isoleucina-ARNt Ligasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Pruebas de Sensibilidad Microbiana , Piperazinas/síntesis química , Piperazinas/química , Piperazinas/farmacología , Pregnenodionas/síntesis química , Pregnenodionas/química , Pregnenodionas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Tetrazoles/síntesis química , Tetrazoles/química , Tetrazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA