Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4878, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966174

RESUMEN

Essential oils are highly concentrated natural extracts obtained from plants, rich in bioactive constituents with antimicrobial properties, but the distinctive climate of the Western Himalayan region influences the same. Aromatic and medicinal plants, viz., Origanum majorana, Origanum vulgare, Cymbopogon winterianus, Pelargonium graveolens, and Nepeta cataria were grown in the foothills of the Western Himalayan condition and evaluated for essential oil content, composition, and their effect on some of the most common pathogenic microorganisms. The essential oil content (%) was 0.77, 0.45, 1.37, 0.15 and 0.17% in O. majorana, O. vulgare, C. winterianus, P. graveolens, and N. cataria, respectively. The major essential oil constituents of the isolated oils were terpinen-4-ol, thymol, citronellal, citronellol, and nepetalactone, contributing 41.24%, 31.81%, 43.13%, 43.35% and 91.43% in O. majorana, O. vulgare, C. winterianus, P. graveolens, and N. cataria, respectively. Well-diffusion assay revealed that the essential oil of O. majorana and O. vulgare was active against both the tested Gram-positive, viz., Bacillus subtilis MTCC 121, Micrococcus luteus MTCC 2470, and Staphylococcus aureus MTCC 96; and Gram-negative, viz., Escherichia coli MTCC 43, Klebsiella pneumoniae MTCC 109, and Pseudomonas aeruginosa MTCC 2453 bacteria, while the essential oil of C. winterianus, P. graveolens, and N. cataria showed activity against only some Gram-positive bacteria. Minimum inhibitory concentration (v/v) values indicated the highest efficacy of O. majorana essential oil against B. subtilis (0.5%), M. luteus (1%), and S. aureus (1%), while O. vulgare was most efficient to E. coli (2%) and K. pneumoniae (2%). C. winterianus essential oil did not inhibit any bacterial strains. M. luteus was susceptible to the essential oil of P. graveolens (1%) and N. cataria (0.5%) at low concentrations. Present findings showed the association between the chemical constituents' profile of isolated essential oils from the Himalayan region and their antimicrobial activity, indicating their perspective to be utilized as antibacterial means.


Asunto(s)
Antiinfecciosos , Lamiaceae , Aceites Volátiles , Origanum , Aceites Volátiles/química , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Antibacterianos/química , Origanum/química , Pruebas de Sensibilidad Microbiana
2.
3 Biotech ; 12(12): 349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386565

RESUMEN

Patchouli is a prized tropical medicinal herb with broad-spectrum therapeutic importance. The present research work describes development of an efficient callus-mediated plant regeneration protocol along with associated germplasm portability system (via alginate-encapsulation). Using 1.5 mg/l α-naphthalene acetic acid (NAA) and 1.0 mg/l 2, 4-dichlorophenoxy acetic acid (2, 4-D), highly proliferative friable calli were produced that subsequently underwent organogenesis in combinatorial cytokinin treatment to yield multiple shoot clusters. The highest frequency of shoot formation was achieved using 1.5 mg/l NAA with 1.5 mg/l 6-benzylaminopurine (BAP) in Murashige and Skoog (MS) medium. In vitro-derived shoot tips were encapsulated with 3% sodium alginate and 100 mM CaCl2 solution. The encapsulated beads were germinated in MS media with various concentrations of polyamines, where the highest regeneration frequency was observed with 1.5 mg/l spermidine. The regenerated shoots were rooted in basal MS medium and were successfully acclimatized with 96% survival rate. Genetic homogeneity amongst the regenerated plantlets was validated using Start Codon Targeted polymorphism (SCoT) and CAAT box-derived polymorphism (CBDP) ascertaining a high degree of clonal fidelity. The essential oil (EO) profiling of the donor plant and the in vitro-derived plantlets revealed identical composition. Furthermore, the antibacterial activities of various tissue extracts and extracted EOs were evaluated against the opportunistic pathogens viz. Klebsiella pneumoniae (MTCC 109), Salmonella typhii (MTCC 733), Micrococcus luteus (MTCC 2470) and Staphylococcus aureus (MTCC 96). The minimum inhibitory concentration (MIC) ranged from 0.31 to 5.0 mg/ml and 2.5 to 5.0 mg/ml against Gram-positive and Gram-negative bacteria, respectively. Eventually, the present research provides a holistic insight into the rapid regeneration of quality planting material as well as pharmacological bioprospection of patchouli along with the scope of further qualitative improvement via genetic transformation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03302-3.

3.
Genomics ; 113(3): 1448-1457, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33744342

RESUMEN

The medicinal herb, Picrorhiza kurroa Royle ex Benth has become endangered because of indiscriminate over-harvesting. Although micropropagation has been attempted for mass propagation of the plant, survival of in vitro plantlets under green house/open field poses a major challenge. Biopriming of micropropagated plantlets with plant growth-promoting rhizobacteria (PGPR) are among the successful methods to combat this problem. Serratia quinivorans PKL:12 was the best-characterized PGPR from rhizospheric soil of P. kurroa as it increased the vegetative growth and survival of the micropropagated plantlets most effectively. Complete genome (5.29 Mb) predicted genes encoding proteins for cold adaptation and plant growth-promoting traits in PKL:12. Antibiotic and biosynthetic gene cluster prediction supported PKL:12 as a potential biocontrol agent. Comparative genomics revealed 226 unique genes with few genes associated with plant growth-promoting potential. Physiological and genomic evidence supports S. quinivorans PKL:12 as a potential agent for bio-hardening of micropropagated P. kurroa plantlets in cold regions.


Asunto(s)
Picrorhiza , Plantas Medicinales , Genómica , Picrorhiza/genética , Picrorhiza/metabolismo , Plantas Medicinales/genética , Serratia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA