Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686193

RESUMEN

Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 µg/mL and 60 µg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3ß), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.


Asunto(s)
Productos Biológicos , Ajo , Animales , Ratas , Antioxidantes , Neuronas , Etanol , Quinasas MAP Reguladas por Señal Extracelular , Extractos Vegetales/farmacología
2.
J Ethnopharmacol ; 306: 116165, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36641106

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acceleration of neurite outgrowth and halting neurodegeneration are the most critical factors that are negatively regulated in various neurodegenerative diseases or injuries in the central nervous system (CNS). Functional foods or nutrients are considered alternative sources of bioactive components to alleviate various CNS injuries by promoting neuritogenesis and synaptogenesis, while their exact molecular mechanism remains unexplored. AIM OF THE STUDY: Coriandrum sativum L. (CS) is one of the popular herbs in the Apiaceae family, of which CNS modulating action is a well-documented traditionally but detailed study on memory boosting function yet remains unexplored. Consequently, this study aims to analyze the neurogenic and synaptogenic modulation of CS aqueous ethanol (CSAE) extract in the primary hippocampal neurons. MATERIALS AND METHODS: Primary hippocampal neurons were cultured and allowed to incubate with CSAE or vehicle. To observe the early neuronal differentiation, axonal and dendritic arborization, and synapse formation, neurons were immune-stained against indicated antibodies or stained directly with a lipophilic dye (1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethyl indocarbocyanine perchlorate, DiL). Meanwhile, western blot was used to validate the synaptogenesis effect of CSAE compared to vehicle. Additionally, molecular docking and system pharmacology approaches were applied to confirm the possible secondary metabolites and pathways by which CSAE promotes neuritogenesis. RESULTS: Results show that CSAE can induce neuritogenesis and synaptogenesis at 30 µg/mL concentration. The treatment impacts early neuronal polarization, axonal and dendritic arborization, synaptogenesis, and synaptic plasticity via NMDARs expressions in primary neurons. In silico network pharmacology of CS metabolites show that the CSAE-mediated neurogenic effect is likely dependent on the NTRK2 (TrkB) mediated neurotrophin signaling pathway. Indeed, the observed neurogenic activity of CSAE is markedly reduced upon the co-treatment with a TrkB-specific inhibitor. Furthermore, molecular docking following binding energy calculation shows that one of the CS metabolites, scoparone, has a high affinity to bind in the BDNF mimetic binding site of TrkB, suggesting its role in TrkB activation. Scoparone was found to enhance neuritogenesis, but not to the same extent as CSAE. Moreover, the expression of TrkB signaling-related proteins (BCL2, CASP3, GSK3, and BDNF), which was found to be modulated by scoparone, was significantly affected by the co-treatment of TrkB inhibitor (ANA-12). These results further suggest that the modulation of neuritogenesis by scoparone is TrkB-dependent. CONCLUSIONS: This study provides deeper insights into the molecular mechanism of CS in boosting neuronal growth and memory function, which might implicate the prevention of many neurological disorders.


Asunto(s)
Coriandrum , Coriandrum/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/farmacología , Simulación del Acoplamiento Molecular , Neuronas , Receptor trkB/metabolismo , Hipocampo , Células Cultivadas
3.
Curr Neuropharmacol ; 21(2): 353-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35272592

RESUMEN

Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.


Asunto(s)
Fitoestrógenos , Calidad de Vida , Humanos , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico , Estrógenos/uso terapéutico , Estrógenos/farmacología , Encéfalo
4.
Phytother Res ; 36(6): 2524-2541, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35443091

RESUMEN

Withania somnifera (WS), is known for its remarkable contribution in herbal medicine and Ayurveda, which is therapeutically applied to improve memory and anxiety in patients. However, the pharmacological details of this plant on memory boosting yet remained undefined. This study provides mechanistic insights on the effect of ethanol solution extract of the whole plant of WS (WSEE) on neuritogenesis by combining in vitro and in silico network pharmacology approaches. WSEE promoted significant neuronal growth through early differentiation, axodendritic arborization, and synaptogenesis on primary hippocampal neurons. The network pharmacological study confirmed that the neuritogenic activity is potentially mediated by modulating the neurotrophin signaling pathway, where NRTK1 (TrkA) was revealed as the primary target of WS secondary metabolites. This neurotrophic activity of WSEE was significantly stifled by the presence of TrkA inhibitor, which further confirms the TrkA-dependent activity of WSEE. In addition, a molecular docking study suggested steroidal lactones present in the WS might act as nerve growth factor (NGF)-mimetics, activating TrkA by binding to the NGF-binding domain. As a whole, the findings of the study suggest a significant role of WSEE on neuritogenesis and its potential to function as a therapeutic agent and in drug designing for the prevention and treatment of memory-related neurological disorders.


Asunto(s)
Withania , Humanos , Trastornos de la Memoria/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/uso terapéutico , Farmacología en Red , Neuronas , Extractos Vegetales/uso terapéutico , Withania/química
5.
Nutrients ; 13(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073784

RESUMEN

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.


Asunto(s)
Nigella sativa/química , Preparaciones de Plantas/química , Preparaciones de Plantas/farmacología , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Benzoquinonas/análisis , Disponibilidad Biológica , Supervivencia Celular/efectos de los fármacos , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Metabolismo Energético , Alimentos Funcionales , Humanos , Inmunomodulación/efectos de los fármacos , Inflamación/terapia , Estrés Oxidativo/efectos de los fármacos , Fitoterapia/métodos , Preparaciones de Plantas/farmacocinética
6.
Neurochem Int ; 144: 104957, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33444677

RESUMEN

BACKGROUND: Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited. THE AIM OF THE STUDY: To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation. MATERIALS AND METHODS: Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturation and synaptogenesis were performed using Image J software. Neuronal viability was determined using trypan blue exclusion assay. RESULTS: CAE at varying concentrations ranging from 3.75 to 15 µg/mL enhanced neurite outgrowth with the highest optimal concentration of 7.5 µg/mL. The effects of CAE commenced immediately after cell seeding, as indicated by its accelerating effect on neuronal differentiation. Subsequently, CAE significantly elaborated dendritic and axonal morphology and facilitated synapse formation. Asiatic acid also facilitated neurite outgrowth, but to a lesser extent than CAE. CONCLUSION: These findings revealed that CAE exerted its modulatory effects in every stage of neuronal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.


Asunto(s)
Axones/efectos de los fármacos , Dendritas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Triterpenos/farmacología , Animales , Axones/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Centella , Dendritas/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Hipocampo/citología , Hipocampo/fisiología , Neuronas/patología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Embarazo , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología , Triterpenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA