Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Stimul ; 10(1): 126-138, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27839724

RESUMEN

BACKGROUND: The motor thalamus is a key nodal point in the pallidothalamocortical "motor" circuit, which has been implicated in the pathogenesis of Parkinson's disease (PD) and other movement disorders. Although a critical structure in the motor circuit, the role of the motor thalamus in mediating the therapeutic effects of deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) is not fully understood. OBJECTIVE: To characterize the changes in neuronal activity in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis posterior lateralis pars oralis (VPLo)) receiving areas of the motor thalamus during therapeutic GPi DBS. METHODS: Neuronal activity from the VA/VLo (n = 134) and VPLo (n = 129) was recorded from two non-human primates made parkinsonian using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. For each isolated unit, one minute of data was recorded before, during and after DBS; a pulse width of 90 µs and a frequency of 135 Hz were used for DBS to replicate commonly used clinical settings. Stimulation amplitude was determined based on the parameters required to improve motor signs. Severity of motor signs was assessed using the UPDRS modified for nonhuman primates. Discharge rate, presence and characteristics of bursts, and oscillatory activity were computed and compared across conditions (pre-, during, and post-stimulation). RESULTS: Neurons in both the pallidal and cerebellar receiving areas demonstrated significant changes in their pattern of activity during therapeutic GPi DBS. A majority of the neurons in each nucleus were inhibited during DBS (VA/VLo: 47% and VPLo: 49%), while a smaller subset was excited (VA/VLo: 21% and VPLo: 17%). Bursts changed in structure, becoming longer in duration and both intra-burst and inter-spike intervals and variability were increased in both subnuclei. High frequency oscillatory activity was significantly increased during stimulation with 33% of VA/VLo (likelihood ratio: p < 0.0001) and 34% of VPLo (p < 0.0001) neurons entrained to the stimulation pulse train. CONCLUSIONS: Therapeutic GPi DBS produced a significant change in neuronal activity in both pallidal and cerebellar receiving areas of the motor thalamus. DBS suppressed activity in the majority of neurons, changed the structure of bursting activity and locked the neuronal response of one-third of cells to the stimulation pulse, leading to an increase in the power of gamma oscillations. These data support the hypothesis that stimulation activates output from the stimulated structure and that GPi DBS produces network-wide changes in neuronal activity that includes both the pallidal and cerebellar thalamo-cortical circuits.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiología , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/terapia , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Cerebelo/fisiología , Femenino , Macaca mulatta , Primates
2.
J Neurophysiol ; 114(2): 825-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26084905

RESUMEN

High-frequency stimulation is known to entrain spike activity downstream and upstream of several clinical deep brain stimulation (DBS) targets, including the cerebellar-receiving area of thalamus (VPLo), subthalamic nucleus (STN), and globus pallidus (GP). Less understood are the fidelity of entrainment to each stimulus pulse, whether entrainment patterns are stationary over time, and how responses differ among DBS targets. In this study, three rhesus macaques were implanted with a single DBS lead in VPLo, STN, or GP. Single-unit spike activity was recorded in the resting state in motor cortex during VPLo DBS, in GP during STN DBS, and in STN and pallidal-receiving area of motor thalamus (VLo) during GP DBS. VPLo DBS induced time-locked spike activity in 25% (n = 15/61) of motor cortex cells, with entrained cells following 7.5 ± 7.4% of delivered pulses. STN DBS entrained spike activity in 26% (n = 8/27) of GP cells, which yielded time-locked spike activity for 8.7 ± 8.4% of stimulus pulses. GP DBS entrained 67% (n = 14/21) of STN cells and 32% (n = 19/59) of VLo cells, which showed a higher fraction of pulses effectively inhibiting spike activity (82.0 ± 9.6% and 86.1 ± 16.6%, respectively). Latency of phase-locked spike activity increased over time in motor cortex (58%, VPLo DBS) and to a lesser extent in GP (25%, STN DBS). In contrast, the initial inhibitory phase observed in VLo and STN during GP DBS remained stable following stimulation onset. Together, these data suggest that circuit-level entrainment is low-pass filtered during high-frequency stimulation, most notably for glutamatergic pathways. Moreover, phase entrainment is not stationary or consistent at the circuit level for all DBS targets.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Estimulación Encefálica Profunda/métodos , Femenino , Macaca mulatta , Masculino , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Periodicidad , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA