Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 41(3): 694-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24585443

RESUMEN

PURPOSE: Idiopathic generalized epilepsies (IGE) comprise a group of clinical syndromes associated with spike wave discharges, putatively linked to alterations in neurotransmission. The purpose of this study was to investigate whether patients with IGE have altered glutamine and γ-aminobutyric acid (GABA) levels indicative of altered excitatory and inhibitory neurotransmission in frontal regions. MATERIALS AND METHODS: Single-voxel MEGA-edited PRESS magnetic resonance imaging (MRI) spectra were acquired from a 30-mL voxel in the dorsolateral prefrontal cortex in 13 patients with IGE (8 female) and 16 controls (9 female) at 3T. Metabolite concentrations were derived using LCModel. Differences between groups were investigated using an unpaired t-test. RESULTS: Patients with IGE were found to have significantly higher glutamine than controls (P = 0.02). GABA levels were also elevated in patients with IGE (P = 0.03). CONCLUSION: Patients with IGE have increased frontal glutamine and GABA compared with controls. Since glutamine has been suggested to act as a surrogate for metabolically active glutamate, it may represent a marker for excitatory neurotransmission.


Asunto(s)
Epilepsia Generalizada/metabolismo , Lóbulo Frontal/metabolismo , Glutamina/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Espectroscopía de Resonancia Magnética/métodos , Ácido gamma-Aminobutírico/metabolismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
2.
PLoS One ; 9(2): e88220, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505436

RESUMEN

Overexposure to manganese (Mn) may lead to parkinsonian symptoms including motor deficits. The main inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is known to play a pivotal role in the regulation and performance of movement. Therefore this study was aimed at testing the hypothesis that an alteration of GABA following Mn exposure may be associated with fine motor performance in occupationally exposed workers and may underlie the mechanism of Mn-induced motor deficits. A cohort of nine Mn-exposed male smelter workers from an Mn-iron alloy factory and 23 gender- and age-matched controls were recruited and underwent neurological exams, magnetic resonance spectroscopy (MRS) measurements, and Purdue pegboard motor testing. Short-echo-time MRS was used to measure N-Acetyl-aspartate (NAA) and myo-inositol (mI). GABA was detected with a MEGA-PRESS J-editing MRS sequence. The mean thalamic GABA level was significantly increased in smelter workers compared to controls (p = 0.009). Multiple linear regression analysis reveals (1) a significant association between the increase in GABA level and the duration of exposure (R(2) = 0.660, p = 0.039), and (2) significant inverse associations between GABA levels and all Purdue pegboard test scores (for summation of all scores R(2) = 0.902, p = 0.001) in the smelter workers. In addition, levels of mI were reduced significantly in the thalamus and PCC of smelter workers compared to controls (p = 0.030 and p = 0.009, respectively). In conclusion, our results show clear associations between thalamic GABA levels and fine motor performance. Thus in Mn-exposed subjects, increased thalamic GABA levels may serve as a biomarker for subtle deficits in motor control and may become valuable for early diagnosis of Mn poisoning.


Asunto(s)
Hierro/efectos adversos , Manganeso/efectos adversos , Actividad Motora/fisiología , Exposición Profesional/efectos adversos , Tálamo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Humanos , Masculino , Examen Neurológico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA