Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628140

RESUMEN

Gastrointestinal toxicity (GIT) is a debilitating side effect of Irinotecan (CPT-11) and limits its clinical utility. Gut dysbiosis has been shown to mediate this side effect of CPT-11 by increasing gut bacterial ß-glucuronidase (GUSB) activity and impairing the intestinal mucosal barrier (IMB). We have recently shown the opposing effects of omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) on the gut microbiome. We hypothesized that elevated levels of tissue n-3 PUFA with a decreased n-6/n-3 PUFA ratio would reduce CPT-11-induced GIT and associated changes in the gut microbiome. Using a unique transgenic mouse (FAT-1) model combined with dietary supplementation experiments, we demonstrate that an elevated tissue n-3 PUFA status with a decreased n-6/n-3 PUFA ratio significantly reduces CPT-11-induced weight loss, bloody diarrhea, gut pathological changes, and mortality. Gut microbiome analysis by 16S rRNA gene sequencing and QIIME2 revealed that improvements in GIT were associated with the reduction in the CPT-11-induced increase in both GUSB-producing bacteria (e.g., Enterobacteriaceae) and GUSB enzyme activity, decrease in IMB-maintaining bacteria (e.g., Bifidobacterium), IMB dysfunction and systemic endotoxemia. These results uncover a host-microbiome interaction approach to the management of drug-induced gut toxicity. The prevention of CPT-11-induced gut microbiome changes by decreasing the tissue n-6/n-3 PUFA ratio could be a novel strategy to prevent chemotherapy-induced GIT.


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ácidos Grasos Omega-3 , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Animales , Antineoplásicos/farmacología , Bacterias/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-6/farmacología , Enfermedades Gastrointestinales/tratamiento farmacológico , Irinotecán/farmacología , Ratones , ARN Ribosómico 16S/genética
2.
Int J Obes (Lond) ; 45(3): 588-598, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33223517

RESUMEN

BACKGROUND: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.


Asunto(s)
Cognición/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Vitamina A , Animales , Eje Cerebro-Intestino/efectos de los fármacos , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Vitamina A/administración & dosificación , Vitamina A/farmacología
3.
EBioMedicine ; 63: 103176, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33349590

RESUMEN

BACKGROUND: The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. METHODS: B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FINDINGS: B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). INTERPRETATION: This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FUNDING: This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.


Asunto(s)
Bifidobacterium longum/fisiología , Resistencia a la Enfermedad , Interacciones Microbiota-Huesped , Obesidad/metabolismo , Adiposidad , Corticoesteroides/sangre , Animales , Biomarcadores , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Metabolismo Energético , Glucosa/metabolismo , Leptina/sangre , Masculino , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/etiología , Probióticos , Roedores , Investigación Biomédica Traslacional
4.
Mar Drugs ; 16(6)2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925774

RESUMEN

Accumulating evidence demonstrates that dietary supplementation with functional food ingredients play a role in systemic and brain health as well as in healthy ageing. Conversely, deficiencies in calcium and magnesium as a result of the increasing prevalence of a high fat/high sugar "Western diet" have been associated with health problems such as obesity, inflammatory bowel diseases, and cardiovascular diseases, as well as metabolic, immune, and psychiatric disorders. It is now recognized that modulating the diversity of gut microbiota, the population of intestinal bacteria, through dietary intervention can significantly impact upon gut health as well as systemic and brain health. In the current study, we show that supplementation with a seaweed and seawater-derived functional food ingredient rich in bioactive calcium and magnesium (0.1% supplementation) as well as 70 other trace elements, significantly enhanced the gut microbial diversity in adult male rats. Given the significant impact of gut microbiota on health, these results position this marine multi-mineral blend (MMB) as a promising digestive-health promoting functional food ingredient.


Asunto(s)
Suplementos Dietéticos , Alimentos Funcionales , Microbioma Gastrointestinal/efectos de los fármacos , Minerales/farmacología , Algas Marinas/química , Animales , Conducta Animal/efectos de los fármacos , ADN Bacteriano/aislamiento & purificación , Microbioma Gastrointestinal/genética , Masculino , Minerales/química , Modelos Animales , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley
5.
Br J Nutr ; 118(11): 959-970, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29173237

RESUMEN

n-3 PUFA are lipids that play crucial roles in immune-regulation, cardio-protection and neurodevelopment. However, little is known about the role that these essential dietary fats play in modulating caecal microbiota composition and the subsequent production of functional metabolites. To investigate this, female C57BL/6 mice were assigned to one of three diets (control (CON), n-3 supplemented (n3+) or n-3 deficient (n3-)) during gestation, following which their male offspring were continued on the same diets for 12 weeks. Caecal content of mothers and offspring were collected for 16S sequencing and metabolic phenotyping. n3- male offspring displayed significantly less % fat mass than n3+ and CON. n-3 Status also induced a number of changes to gut microbiota composition such that n3- offspring had greater abundance of Tenericutes, Anaeroplasma and Coriobacteriaceae. Metabolomics analysis revealed an increase in caecal metabolites involved in energy metabolism in n3+ including α-ketoglutaric acid, malic acid and fumaric acid. n3- animals displayed significantly reduced acetate, butyrate and total caecal SCFA production. These results demonstrate that dietary n-3 PUFA regulate gut microbiota homoeostasis whereby n-3 deficiency may induce a state of disturbance. Further studies are warranted to examine whether these microbial and metabolic disturbances are causally related to changes in metabolic health outcomes.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Ciego/microbiología , Ácidos Grasos Omega-3/deficiencia , Microbioma Gastrointestinal , Animales , Composición Corporal , ADN Bacteriano/aislamiento & purificación , Dieta , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/sangre , Femenino , Fumaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Masculino , Metaboloma , Metabolómica , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/aislamiento & purificación , Análisis de Secuencia de ADN
6.
Microbiome ; 5(1): 30, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28285599

RESUMEN

BACKGROUND: There is strong evidence indicating that gut microbiota have the potential to modify, or be modified by the drugs and nutritional interventions that we rely upon. This study aims to characterize the compositional and functional effects of several nutritional, neutraceutical, and pharmaceutical cardiovascular disease interventions on the gut microbiome, through metagenomic and metabolomic approaches. Apolipoprotein-E-deficient mice were fed for 24 weeks either high-fat/cholesterol diet alone (control, HFC) or high-fat/cholesterol in conjunction with one of three dietary interventions, as follows: plant sterol ester (PSE), oat ß-glucan (OBG) and bile salt hydrolase-active Lactobacillus reuteri APC 2587 (BSH), or the drug atorvastatin (STAT). The gut microbiome composition was then investigated, in addition to the host fecal and serum metabolome. RESULTS: We observed major shifts in the composition of the gut microbiome of PSE mice, while OBG and BSH mice displayed more modest fluctuations, and STAT showed relatively few alterations. Interestingly, these compositional effects imparted by PSE were coupled with an increase in acetate and reduction in isovalerate (p < 0.05), while OBG promoted n-butyrate synthesis (p < 0.01). In addition, PSE significantly dampened the microbial production of the proatherogenic precursor compound, trimethylamine (p < 0.05), attenuated cholesterol accumulation, and nearly abolished atherogenesis in the model (p < 0.05). However, PSE supplementation produced the heaviest mice with the greatest degree of adiposity (p < 0.05). Finally, PSE, OBG, and STAT all appeared to have considerable impact on the host serum metabolome, including alterations in several acylcarnitines previously associated with a state of metabolic dysfunction (p < 0.05). CONCLUSIONS: We observed functional alterations in microbial and host-derived metabolites, which may have important implications for systemic metabolic health, suggesting that cardiovascular disease interventions may have a significant impact on the microbiome composition and functionality. This study indicates that the gut microbiome-modifying effects of novel therapeutics should be considered, in addition to the direct host effects.


Asunto(s)
Apolipoproteínas E/deficiencia , Heces/microbiología , Microbioma Gastrointestinal , Metaboloma , Acetatos/metabolismo , Animales , Aterosclerosis , Atorvastatina/administración & dosificación , Butiratos/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Carnitina/análogos & derivados , Carnitina/sangre , Colesterol/metabolismo , Colesterol en la Dieta/administración & dosificación , Dieta Alta en Grasa , Suplementos Dietéticos , Hemiterpenos , Limosilactobacillus reuteri , Masculino , Ratones , Obesidad , Ácidos Pentanoicos/metabolismo , Probióticos , beta-Glucanos/administración & dosificación
7.
Brain Behav Immun ; 59: 21-37, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27423492

RESUMEN

BACKGROUND: Neurodevelopment is strongly influenced by maternal and early-postnatal diet. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are vital structural and functional components of the developing brain. The gut microbiota is also influenced by n-3 PUFA status, however, little is known about the role of maternal and early-life n-3 PUFA intake on offspring gut microbiota development and subsequent interactions with central nervous system functioning and behavioural outcomes. METHODS: Pregnant female C57BL/6 mice and their male offspring were fed a control (CON), omega-3 deficient (O3-) or omega-3 supplemented (O3+) diet. Cognitive, depressive and social behaviours were assessed through a battery of behaviour tests in the male offspring at both adolescence (week 4-5) and adulthood (week 11-13). Hypothalamic-pituitary-adrenal axis (HPA) activation was assessed by analysis of stress-induced corticosterone production. Fecal microbiota composition was analysed by 16S sequencing at both adolescent and adulthood. In addition, stimulated spleen cytokine levels were assessed. RESULTS: n-3 PUFA interventions induced subtle changes in offspring early-life and adolescent behaviours, which were further evident in adulthood, such that O3- animals displayed impaired communication, social and depression-related behaviours and O3+ animals displayed enhanced cognition. O3- mice displayed an elevated Firmicutes:Bacteroidetes ratio and blunted systemic LPS responsiveness. Contrastingly, O3+ mice displayed greater fecal Bifidobacterium and Lactobacillus abundance and dampened HPA-axis activity. CONCLUSIONS: Neurobehavioural development related to cognitive, anxiety and social behaviours, is highly dependent upon in utero and lifelong n-3 PUFA availability. In addition, neurobehavioural changes induced by altering n-3 PUFA status are closely associated with comprehensive alterations in gut microbiota composition, HPA-axis activity and inflammation.


Asunto(s)
Conducta Animal/fisiología , Ácidos Grasos Omega-3/fisiología , Microbioma Gastrointestinal/fisiología , Envejecimiento/psicología , Animales , Cognición , Corticosterona/sangre , Citocinas/metabolismo , Depresión/psicología , Ácidos Grasos/metabolismo , Miedo , Femenino , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Hipófiso-Suprarrenal/fisiología , Embarazo , Reconocimiento en Psicología , Conducta Social , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Natación/psicología , Vocalización Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA