Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(6): 100548, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38649096

RESUMEN

DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.

2.
Metabolites ; 13(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887396

RESUMEN

The Omega-3 Index (O3I) reflects eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in erythrocytes. While the O3I is associated with numerous health outcomes, its widespread use is limited. We investigated whether urinary metabolites could be used to non-invasively monitor the O3I in an exploratory analysis of a previous placebo-controlled, parallel arm randomized clinical trial in males and females (n = 88) who consumed either ~3 g/d olive oil (OO; control), EPA, or DHA for 12 weeks. Fasted blood and first-void urine samples were collected at baseline and following supplementation, and they were analyzed via gas chromatography and multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), respectively. We tentatively identified S-carboxypropylcysteamine (CPCA) as a novel urinary biomarker reflecting O3I status, which increased following both EPA and DHA (p < 0.001), but not OO supplementation, and was positively correlated to the O3I (R = 0.30, p < 0.001). Additionally, an unknown dianion increased following DHA supplementation, but not EPA or OO. In ROC curve analyses, CPCA outperformed all other urinary metabolites in distinguishing both between OO and EPA or DHA supplementation groups (AUC > 80.0%), whereas the unknown dianion performed best in discriminating OO from DHA alone (AUC = 93.6%). Candidate urinary biomarkers of the O3I were identified that lay the foundation for a non-invasive assessment of omega-3 status.

3.
J Lipid Res ; 64(11): 100445, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37730162

RESUMEN

Optimal dietary intake of omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) is critical to human health across the lifespan. However, omega-3 index (O3I) determination is not routinely assessed due to complicated procedures for n3-LCPUFA analysis from the phospholipid (PL) fraction of erythrocytes. Herein, a high-throughput method for lipidomics based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry was applied to identify circulating PLs as surrogate biomarkers of O3I in two randomized placebo-controlled trials. An untargeted lipidomic data workflow using a subgroup analysis of serum extracts from sunflower oil versus high-dose fish oil (FO)-supplemented participants revealed that ingested n3-LCPUFAs were primarily distributed as their phosphatidylcholines (PCs) relative to other PL classes. In both high-dose FO (5.0 g/day) and EPA-only trials (3.0 g/day), PC (16:0_20:5) was the most responsive PL, whereas PC (16:0_22:6) was selective to DHA-only supplementation. We also demonstrated that the sum concentration of both these PCs in fasting serum or plasma samples was positively correlated to the O3I following FO (r = 0.708, P = 1.02 × 10-11, n = 69) and EPA- or DHA-only supplementation (r = 0.768, P = 1.01 × 10-33, n = 167). Overall, DHA was more effective in improving the O3I (ΔO3I = 4.90 ± 1.33%) compared to EPA (ΔO3I = 2.99 ± 1.19%) in young Canadian adults who had a poor nutritional status with an O3I (3.50 ± 0.68%) at baseline. Our method enables the rapid assessment of the O3I by directly measuring two circulating PC species in small volumes of blood, which may facilitate screening applications for population and precision health.


Asunto(s)
Ácidos Grasos Omega-3 , Lipidómica , Adulto , Humanos , Ácido Eicosapentaenoico , Fosfatidilcolinas , Ácidos Docosahexaenoicos , Canadá , Aceites de Pescado , Suplementos Dietéticos , Biomarcadores
4.
J Lipid Res ; 64(6): 100376, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085033

RESUMEN

The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.


Asunto(s)
Ácidos Grasos , Insulinas , Ratones , Masculino , Animales , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ratones Noqueados , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Peso Corporal , Insulinas/metabolismo , Tejido Adiposo/metabolismo
5.
Am J Physiol Endocrinol Metab ; 324(3): E241-E250, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696599

RESUMEN

Delta-6 desaturase (D6D), encoded by the Fads2 gene, catalyzes the first step in the conversion of α-linolenic acid to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ablation of D6D in whole body Fads2-/- knockout (KO) mice results in an inability to endogenously produce EPA and DHA. Evidence supports a beneficial role for EPA and DHA on insulin-stimulated glucose disposal in skeletal muscle in the context of a metabolic challenge; however, it is unknown how low EPA and DHA levels impact skeletal muscle fatty acid composition and insulin signaling in a healthy context. The objective of this study was to examine the impact of ablating the endogenous production of EPA and DHA on skeletal muscle fatty acid composition, whole body glucose and insulin tolerance, and a key marker of skeletal muscle insulin signaling (pAkt). Male C57BL/6J wild-type (WT), Fads2+/- heterozygous, and Fads2-/- KO mice were fed a low-fat diet (16% kcal from fat) modified to contain either 7% w/w lard or 7% w/w flaxseed for 21 wk. No differences in total phospholipid (PL), triacylglycerol, or reactive lipid content were observed between genotypes. As expected, KO mice on both diets had significantly less DHA content in skeletal muscle PL. Despite this, KO mice did not have significantly different glucose or insulin tolerance compared with WT mice on either diet. Basal pAktSer473 was not significantly different between the genotypes within each diet. Ultimately, this study shows for the first time, to our knowledge, that the reduction of DHA in skeletal muscle is not necessarily detrimental to glucose homeostasis in otherwise healthy animals.NEW & NOTEWORTHY Skeletal muscle is the primary location of insulin-stimulated glucose uptake. EPA and DHA supplementation has been observed to improve skeletal muscle insulin-stimulated glucose uptake in models of metabolic dysfunction. Fads2-/- knockout mice cannot endogenously produce long-chain n-3 polyunsaturated fatty acids. Our results show that the absence of DHA in skeletal muscle is not detrimental to whole body glucose homeostasis in healthy mice.


Asunto(s)
Ácidos Docosahexaenoicos , Intolerancia a la Glucosa , Ratones , Masculino , Animales , Insulina/metabolismo , Ratones Endogámicos C57BL , Ácido Eicosapentaenoico , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Fosfolípidos , Intolerancia a la Glucosa/metabolismo , Glucosa/metabolismo , Ratones Noqueados
6.
Artículo en Inglés | MEDLINE | ID: mdl-36148741

RESUMEN

Dietary feeding and stable isotope studies in rodents support that the 24-carbon omega-3 polyunsaturated fatty acids, tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA), are immediate precursors to docosahexaenoic acid (DHA, 22:6n-3). In this study, we assessed for the first time, changes in TPAn-3 or THA levels following omega-3 PUFA supplementation in humans, providing insight into human omega-3 PUFA metabolism. In this secondary analysis of a double-blind randomized control trial, women and men (19 - 30 years, n = 10 - 14 per sex, per diet) were supplemented with 3 g/day EPA, DHA, or olive oil control for 12 weeks. Plasma TPAn-3 and THA concentrations were determined by gas chromatography-mass spectrometry to determine changes following supplementation in a sex-specific manner (sex x time). EPA supplementation significantly increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM). Furthermore, women had 111% and 99% higher plasma TPAn-3 and THA in the EPA supplemented group compared to men (p < 0.0001). There were no significant effects of time on plasma TPAn-3 or THA concentrations in the DHA supplemented or olive oil supplemented groups. In conclusion, EPA, but not DHA, supplementation in humans increased plasma TPAn-3 and THA levels, suggesting that THA accumulates prior to conversion to DHA in the n-3 PUFA synthesis pathway. Furthermore, women generally exhibit higher plasma TPAn-3 and THA concentrations compared with men, suggesting that women have a greater ability to accumulate 24-carbon n-3 PUFA in plasma via EPA and DPAn-3 elongation, which may explain the known higher DHA levels in women. Summary: In this secondary analysis of a double-blind randomized control trial, we assessed changes in omega-3 (n-3) tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) plasma levels in women and men (19 - 30 years, n = 10 - 14 per sex, per diet) following 12-weeks of n-3 PUFA supplementation (3 g/day EPA, DHA or olive oil). Women had higher plasma TPAn-3 in all supplementation groups and higher THA levels in the EPA and olive oil groups (p < 0.0001) compared to men. EPA supplementation increased (p < 0.0001) plasma TPAn-3 by 215% (1.3 ± 0.1 - 4.1 ± 0.7, nmol/mL ± SEM) and THA by 112% (1.7 ± 0.2 - 3.6 ± 0.5, nmol/mL ± SEM), but DHA supplementation had no effect. For the first time in humans, we show that plasma TPAn-3 and THA levels are higher in women and increased with EPA, but not DHA supplementation, suggesting an accumulation of THA prior to conversion to DHA in the n-3 PUFA synthesis pathway.


Asunto(s)
Ácidos Docosahexaenoicos , Ácidos Grasos Omega-3 , Carbono , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico , Femenino , Humanos , Masculino , Aceite de Oliva
7.
Artículo en Inglés | MEDLINE | ID: mdl-35421603

RESUMEN

Δ-6 desaturase (D6D) is a key enzyme in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA). Evidence suggests that reduced D6D activity not only disrupts LC-PUFA production, but also impacts whole body lipid handling and body weight; however, the mechanisms remain largely unexplored. Therefore, we investigated the effect of D6D inhibition on the regulation of lipid accumulation in 3T3-L1 adipocytes with and without changes in n-3 PUFA content. 3T3-L1 cells were treated with a D6D inhibitor (SC-26196) in the presence or absence of α-linolenic acid (ALA) throughout differentiation. We found that D6D inhibition blocked the conversion of ALA to eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPAn-3) when ALA was supplemented, while no changes in n-3 PUFA content were observed in cells treated with the D6D inhibitor alone. D6D inhibited cells had reduced triacylglycerol (TAG) accumulation despite an EPA/DPA deficiency. In addition, analyses of cellular protein markers, as well as non-esterified fatty acids and glycerol release in medium, suggested an increase in lipolysis and a decrease in fatty acid re-esterification in D6D-inhibited cells, independent of n-3 PUFA changes. To provide further evidence, we treated cells with the D6D inhibitor in the presence or absence of EPA and compared them with ALA-treated cells. Although EPA further reduced TAG content, the reduced markers of fatty acid re-esterification were not affected by ALA or EPA. Collectively, this study provides new insight showing that D6D inhibition reduces TAG accumulation and fatty acid re-esterification in adipocytes independent of changes in n-3 PUFA cellular content.


Asunto(s)
Ácidos Grasos Omega-3 , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Esterificación , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ratones , Triglicéridos/metabolismo
9.
Br J Nutr ; 127(4): 503-512, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33829984

RESUMEN

Diets varying in SFA and MUFA content can impact glycaemic control; however, whether underlying differences in genetic make-up can influence blood glucose responses to these dietary fatty acids is unknown. We examined the impact of dietary oils varying in SFA/MUFA content on changes in blood glucose levels (primary outcome) and whether these changes were modified by variants in the stearoyl-CoA desaturase (SCD) gene (secondary outcome). Obese men and women participating in the randomised, crossover, isoenergetic, controlled-feeding Canola Oil Multicenter Intervention Trial II consumed three dietary oils for 6 weeks, with washout periods of ˜6 weeks between each treatment. Diets studied included a high SFA/low MUFA Control oil (36·6 % SFA/28·2 % MUFA), a conventional canola oil (6·2 % SFA/63·1 % MUFA) and a high-oleic acid canola oil (5·8 % SFA/74·7 % MUFA). No differences in fasting blood glucose were observed following the consumption of the dietary oils. However, when stratified by SCD genotypes, significant SNP-by-treatment interactions on blood glucose response were found with additive models for rs1502593 (P = 0·01), rs3071 (P = 0·02) and rs522951 (P = 0·03). The interaction for rs3071 remained significant (P = 0·005) when analysed with a recessive model, where individuals carrying the CC genotype showed an increase (0·14 (sem 0·09) mmol/l) in blood glucose levels with the Control oil diet, but reductions in blood glucose with both MUFA oil diets. Individuals carrying the AA and AC genotypes experienced reductions in blood glucose in response to all three oils. These findings identify a potential new target for personalised nutrition approaches aimed at improving glycaemic control.


Asunto(s)
Grasas Insaturadas en la Dieta , Estearoil-CoA Desaturasa , Adulto , Glucemia , Grasas de la Dieta , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Femenino , Glucosa , Humanos , Masculino , Obesidad/genética , Aceite de Brassica napus , Estearoil-CoA Desaturasa/genética
10.
Front Nutr ; 8: 768474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35237638

RESUMEN

BACKGROUND: A recent systematic review, which used the GRADE methodology, concluded that there is strong evidence for two gene-diet associations related to omega-3 and plasma triglyceride (TG) responses. Systematic reviews can be used to inform the development of clinical practice guidelines (CPGs). OBJECTIVE: To provide guidance for clinical practice related to genetic testing for evaluating responsiveness to dietary/supplemental omega-3s and their impact on plasma lipids/lipoproteins/apolipoproteins. DESIGN: Using the results of the abovementioned systematic review, the first CPGs in nutrigenetics were developed using the established GRADE methodology and AGREE II approach. RESULTS: Three clinical practice recommendations were developed. Most gene-diet associations identified in the literature lack adequate scientific and clinical validity to warrant consideration for implementing in a practice setting. However, two gene-diet associations with strong evidence (GRADE quality: moderate and high) can be considered for implementation into clinical practice in certain cases: male APOE-E4 carriers (rs429358, rs7412) and TG changes in response to the omega-3 fatty acids eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) as well as a 31-SNP nutrigenetic risk score and TG changes in response to EPA+DHA among adults with overweight/obesity. Ethical and regulatory implications must be considered when providing APOE nutrigenetic tests given the well-established link between APOE genetic variation and Alzheimer's Disease. CONCLUSION: Most of the evidence in this area is not ready for implementation into clinical practice primarily due to low scientific validity (low quality of evidence). However, the first CPGs in nutrigenetics have been developed for two nutrigenetic associations with strong scientific validity, related to dietary/supplemental omega-3 and TG responses.

11.
Lipids ; 56(2): 211-228, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33174255

RESUMEN

Young adult females have higher blood docosahexaenoic acid (DHA), 22:6n-3 levels than males, and this is believed to be due to higher DHA synthesis rates, although DHA may also accumulate due to a longer half-life or a combination of both. However, sex differences in blood fatty acid responses to eicosapentaenoic acid (EPA), 20:5n-3 or DHA supplementation have not been fully investigated. In this exploratory analysis, females and males (n = 14-15 per group) were supplemented with 3 g/day EPA, 3 g/day DHA, or olive oil control for 12 weeks. Plasma was analyzed for sex effects at baseline and changes following 12 weeks' supplementation for fatty acid levels and carbon-13 signature (δ13 C). Following EPA supplementation, the increase in plasma DHA in females (+23.8 ± 11.8, nmol/mL ± SEM) was higher than males (-13.8 ± 9.2, p < 0.01). The increase in plasma δ13 C-DHA of females (+2.79 ± 0.31, milliUrey (mUr ± SEM) compared with males (+1.88 ± 0.44) did not reach statistical significance (p = 0.10). The sex effect appears driven largely by increased plasma DHA in the AA genotype of females (+58.8 ± 11.5, nmol/mL ± SEM, n = 5) compared to GA + GG in females (+4.34 ± 13.5, n = 9) and AA in males (-29.1 ± 17.2, n = 6) for rs953413 in the ELOVL2 gene (p < 0.001). In conclusion, EPA supplementation increases plasma DHA levels in females compared to males, which may be dependent on the AA genotype for rs953413 in ELOVL2.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/análogos & derivados , Elongasas de Ácidos Grasos/genética , Polimorfismo de Nucleótido Simple/genética , Suplementos Dietéticos , Método Doble Ciego , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/farmacología , Elongasas de Ácidos Grasos/sangre , Femenino , Genotipo , Humanos , Masculino
12.
Curr Opin Pharmacol ; 52: 40-46, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32504953

RESUMEN

Omega-3 polyunsaturated fatty acids (N3-PUFA) are widely reported to improve obesity-associated metabolic impairments, in part, through the regulation of adipokine and cytokine secretion from white adipose tissue (WAT). However, the precise underlying molecular mechanisms by which N3-PUFA influence WAT endocrine function remain poorly described. Available evidence supports that N3-PUFA and related bioactive lipid mediators regulate several intracellular pathways that converge on two important transcription factors: PPAR-γ and NF-κB. Further, N3-PUFA signaling through GPR120 appears integral for the regulation of adipokine and cytokine production. This review collates insights from in vitro and in vivo studies using genetic and chemical inhibition of key signaling proteins to describe the pathways by which N3-PUFA regulate WAT endocrine function. Existing gaps in knowledge and opportunities to advance our understanding in this area are also highlighted.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo Blanco/metabolismo , Ácidos Grasos Omega-3/metabolismo , Obesidad/metabolismo , Adipoquinas/genética , Animales , Ácidos Grasos Omega-3/genética , Humanos , Obesidad/genética
13.
Nutrients ; 12(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575852

RESUMEN

There is mounting evidence that diets supplemented with polyunsaturated fatty acids (PUFA) can impact brain biology and functions. This study investigated whether moderately high-fat diets differing in n-6/n-3 fatty acid ratio could impact fatty acid composition in regions of the brain linked to various psychopathologies. Adult male Sprague Dawley rats consumed isocaloric diets (35% kcal from fat) containing different ratios of linoleic acid (n-6) and alpha-linolenic acid (n-3) for 2 months. It was found that the profiles of PUFA in the prefrontal cortex, hippocampus, and hypothalamus reflected the fatty acid composition of the diet. In addition, region-specific changes in saturated fatty acids and monounsaturated fatty acids were detected in the hypothalamus, but not in the hippocampus or prefrontal cortex. This study in adult rats demonstrates that fatty acid remodeling in the brain by diet can occur within months and provides additional evidence for the suggestion that diet could impact mental health.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Conducta Alimentaria , Estado Nutricional , Animales , Encefalopatías/metabolismo , Mapeo Encefálico , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácido Linoleico/metabolismo , Masculino , Ratas Sprague-Dawley , Ácido alfa-Linolénico/metabolismo
14.
Physiol Rep ; 8(9): e14408, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32342642

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na+ /K+ ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) activity by inducing a Ca2+ leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals. Subjects (n = 16 females; n = 8 males; 65 ± 1 years) were randomly assigned into groups supplemented with either olive oil (OO) (5 g/day) or FO (5 g/day) containing 2 g/day eicosapentaenoic acid and 1 g/day docosahexaenoic acid for 12 weeks. Participants visited the laboratory for RMR and substrate oxidation measurements after an overnight fast at weeks 0 and 12. Skeletal muscle biopsies were taken during weeks 0 and 12 for analysis of NKA and SERCA function and protein content. There was a main effect of time with decrease in RMR (5%) and fat oxidation (18%) in both the supplementation groups. The kinetic parameters of SERCA and NKA maximal activity, as well as the expression of SR and NKA proteins, were not affected after OO and FO supplementation. In conclusion, these results suggest that FO supplementation is not effective in altering RMR, substrate oxidation, and skeletal muscle SERCA and NKA protein levels and activities, in healthy older men and women.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Aceites de Pescado/administración & dosificación , Músculo Esquelético/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Edad , Anciano , Metabolismo Basal , Metabolismo Energético , Femenino , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Aceite de Oliva/administración & dosificación , Oxidación-Reducción
15.
Appl Physiol Nutr Metab ; 45(2): 221-225, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31580697

RESUMEN

This study examined the independent effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid supplementation on resting metabolic rate (RMR) and substrate oxidation in young healthy females and males. EPA or DHA supplementation had no effect on RMR and substrate oxidation in males, while DHA reduced RMR by ∼7% (p < 0.01) in females. In conclusion, these data establish potential sex differences on RMR in response to DHA supplements. Novelty Supplementing with DHA decreases resting energy expenditure in healthy young females but not males.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Metabolismo Energético/efectos de los fármacos , Ácidos Docosahexaenoicos/administración & dosificación , Femenino , Humanos , Masculino , Oxidación-Reducción , Factores Sexuales , Adulto Joven
16.
Am J Clin Nutr ; 110(6): 1502-1509, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31535138

RESUMEN

BACKGROUND: Comparative studies suggest that DHA may have stronger serum triglyceride-lowering effects than EPA; however, the molecular basis for this differential effect remains unexplored in humans. Differential regulation of lipogenesis and triglyceride clearance are 2 possible mechanisms of action. OBJECTIVES: We compared the effects of EPA and DHA supplementation on serum triglycerides, markers of lipogenesis, and lipoprotein lipase (LPL) activity in adults participating in a double-blind, multiarm, placebo-controlled parallel-group randomized trial. Lipogenesis was assessed with the lipogenic index and compound specific isotope analysis (CSIA). METHODS: Young, healthy normolipidemic men and women (n = 89; 21.6 ± 0.23 y; mean ± SEM) were randomly allocated into 1 of 3 supplement groups for 12 wk: 1) olive oil, 2) ∼3 g EPA/d, and 3) ∼3 g DHA/d. Omega-3 supplements were provided in triglyceride form. Blood was collected before and after supplementation for the analysis of fatty acids and preheparin LPL activity. Variations in the 13C:12C ratio (δ13C) of palmitate (16:0) and linoleate (18:2n-6) were measured by CSIA. RESULTS: DHA supplementation reduced blood triglycerides (0.85 ± 0.04 mmol/L to 0.65 ± 0.03 mmol/L; P < 0.01), with no change seen with EPA supplementation. DHA supplementation did not change the lipogenic index or δ13C-16:0, whereas EPA supplementation increased the lipogenic index by 11% (P < 0.01) and δ13C-16:0 (P = 0.03) from -23.2 ± 0.2 to -22.8 ± 0.2 milliUrey ± SEM. CONCLUSIONS: Reduced triglyceride concentrations after DHA supplementation are associated with increased LPL activity, whereas the null effect of EPA supplementation on blood triglycerides may stem from the concomitant increases in lipogenesis and LPL activity. Further investigation of the differential triglyceride-lowering effects of EPA and DHA is warranted in both normolipidemic and hyperlipidemic individuals. This trial was registered at clinicaltrials.gov as NCT03378232.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Lipogénesis/efectos de los fármacos , Lipoproteína Lipasa/sangre , Triglicéridos/sangre , Adulto , Suplementos Dietéticos , Femenino , Humanos , Masculino , Adulto Joven
17.
Am J Clin Nutr ; 110(4): 823-831, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31204771

RESUMEN

BACKGROUND: It has long been believed that DHA supplementation increases plasma EPA via the retroconversion pathway in mammals. However, in rodents this increase in EPA is likely due to a slower metabolism of EPA, but this has never been tested directly in humans. OBJECTIVE: The aim of this study was to use the natural variations in 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of n-3 PUFA supplements to assess n-3 PUFA metabolism following DHA or EPA supplementation in humans. METHODS: Participants (aged 21.6 ± 2.2 y) were randomly assigned into 1 of 3 supplement groups for 12 wk: 1) olive oil control, 2) ∼3 g/d DHA, or 3) ∼3 g/d EPA. Blood was collected before and after the supplementation period, and concentrations and δ13C of plasma n-3 PUFA were determined. RESULTS: DHA supplementation increased (P < 0.05) plasma EPA concentrations by 130% but did not affect plasma δ13C-EPA (-31.0 ± 0.30 to -30.8 ± 0.19, milliUrey ± SEM, P > 0.05). In addition, EPA supplementation did not change plasma DHA concentrations (P > 0.05) but did increase plasma δ13C-DHA (-27.9 ± 0.2 to -25.6 ± 0.1, P < 0.05) toward δ13C-EPA of the supplement (-23.5 ± 0.22). EPA supplementation increased plasma concentrations of EPA and docosapentaenoic acid (DPAn-3) by 880% and 200%, respectively, and increased plasma δ13C-EPA (-31.5 ± 0.2 to -25.7 ± 0.2) and δ13C-DPAn-3 (-28.9 ± 0.3 to -25.0 ± 0.1) toward δ13C-EPA of the supplement. CONCLUSIONS: In this study, we show that the increase in plasma EPA following DHA supplementation in humans does not occur via retroconversion, but instead from a slowed metabolism and/or accumulation of plasma EPA. Furthermore, substantial amounts of supplemental EPA can be converted into DHA. δ13C of n-3 PUFA in humans is a powerful and underutilized tool that can track dietary n-3 PUFA and elucidate complex metabolic questions. This trial was registered at clinicaltrials.gov as NCT03378232.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/metabolismo , Isótopos de Carbono , Suplementos Dietéticos , Ácidos Docosahexaenoicos/química , Método Doble Ciego , Ácido Eicosapentaenoico/química , Femenino , Humanos , Masculino , Adulto Joven
18.
Am J Physiol Heart Circ Physiol ; 316(4): H873-H881, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735073

RESUMEN

Supplementation with monounsaturated or ω-3 polyunsaturated fatty acids ( n-3 PUFA) can lower resting blood pressure (BP) and reduce the risk of cardiovascular events. The independent contributions of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on BP, and the mechanisms responsible, are unclear. We tested whether EPA, DHA, and olive oil (OO), a source of monounsaturated fat, differentially affect resting hemodynamics and muscle sympathetic nerve activity (MSNA). Eighty-six healthy young men and women were recruited to participate in a 12-wk, randomized, double-blind trial examining the effects of orally supplementing ~3 g/day of EPA ( n = 28), DHA ( n = 28), or OO ( n = 30) on resting hemodynamics; MSNA was examined in a subset of participants ( n = 31). Both EPA and DHA supplements increased the ω-3 index ( P < 0.01). Reductions in systolic BP were greater [adjusted intergroup mean difference (95% confidence interval)] after DHA [-3.4 mmHg (-0.9, -5.9), P = 0.008] and OO [-3.0 mmHg (-0.5, -5.4), P = 0.01] compared with EPA, with no difference between DHA and OO ( P = 0.74). Reductions in diastolic BP were greater following DHA [-3.4 mmHg (-1.3,-5.6), P = 0.002] and OO [-2.2 mmHg (0.08,-4.3), P = 0.04] compared with EPA. EPA increased heart rate compared with DHA [4.2 beats/min (-0.009, 8.4), P = 0.05] and OO [4.2 beats/min, (0.08, 8.3), P = 0.04]. MSNA burst frequency was higher after DHA [4 bursts/min (0.5, 8.3), P = 0.02] but not OO [-3 bursts/min (-6, 0.6), P = 0.2] compared with EPA. Overall, DHA and OO evoked similar responses in resting BP; however, DHA, but not OO, increased peripheral vasoconstrictor outflow. These findings may have implications for fatty acid supplementation in clinical populations characterized by chronic high BP and sympathetic overactivation. NEW & NOTEWORTHY We studied the effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and olive oil supplementation on blood pressure (BP) and muscle sympathetic nerve activity (MSNA). After 12 wk of 3 g/day supplementation, DHA and olive oil were associated with lower resting systolic and diastolic BPs than EPA. However, DHA increased MSNA compared with EPA. The reductions in BP with DHA likely occur via a vascular mechanism and evoke a baroreflex-mediated increase in sympathetic activity.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Músculo Esquelético/irrigación sanguínea , Aceite de Oliva/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Adolescente , Adulto , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/inervación , Suplementos Dietéticos , Femenino , Humanos , Masculino , Músculo Esquelético/inervación
19.
J Nutr Biochem ; 63: 140-149, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30368227

RESUMEN

Fatty acid desaturase 2 (Fads2) encodes the delta-6 desaturase (D6D) enzyme, which is rate-limiting for the endogenous production of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA). Numerous studies have reported the cardiometabolic health benefits of omega-3 LC-PUFA. Humans carrying genetic variants in the FADS2 gene have reduced levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as well as oxylipins, in blood, erythrocytes and white adipose tissue (WAT). Similar findings have been reported in whole-body Fads2-/- mice fed a diet deficient in omega-3 LC-PUFA. The objective of this study was to determine if a diet containing EPA and DHA would prevent the deficiencies in WAT lipid profiles seen in Fads2-/- mice fed a diet containing only ALA. Male C57BL/6 J Fads2-/- and wild type (WT) mice were fed a low fat (7% w/w) diet for 9 weeks containing either flaxseed oil + ARASCO (FD, containing~53% ALA) or menhaden oil (MD, containing~14% EPA and 10% DHA). Fads2-/- mice fed an ALA-enriched diet had reduced body weight, little-to-no omega-3 LC-PUFA and a near complete loss of all omega-3 derived oxylipins in both epididymal and inguinal WAT (P<.05) compared to their WT counterparts, as well as altered expression of key regulators of the fatty acid desaturase pathway. However, Fads2-/- mice fed a diet containing EPA and DHA prevented most of these changes. This study provides evidence that a diet containing EPA and DHA provides a nutritional strategy to prevent alterations in WAT lipid content caused by reduced D6D activity.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Ácido Graso Desaturasas/deficiencia , Oxilipinas/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Suplementos Dietéticos , Ácido Graso Desaturasas/genética , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Femenino , Aceites de Pescado/farmacología , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Paniculitis/genética , Proteínas/genética , Proteínas/metabolismo
20.
Neuropharmacology ; 141: 272-282, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30195587

RESUMEN

Δ9-tetrahydracannabinol (THC) is recognized as an effective treatment for nausea and vomiting via its action on the cannabinoid 1 (CB1) receptor. Paradoxically, there is evidence that THC can also produce nausea and vomiting. Using the conditioned gaping model of nausea in rats, we evaluated the ability of several doses of THC (0.0, 0.5, 5 and 10 mg/kg, i.p.) to produced conditioned gaping reactions. We then investigated the ability of the CB1 receptor antagonist, rimonabant, to block the establishment of THC-induced conditioned gaping. Real-time polymerase chain reaction (RT-PCR) was then used to investigate changes in endocannabinoid related genes in various brain regions in rats chronically treated with vehicle (VEH), 0.5 or 10 mg/kg THC. THC produced dose-dependent gaping, with 5 and 10 mg/kg producing significantly more gaping reactions than VEH or 0.5 mg/kg THC, a dose known to have anti-emetic properties. Pre-treatment with rimonabant reversed this effect, indicating that THC-induced conditioned gaping was CB1 receptor mediated. The RT-PCR analysis revealed an upregulation of genes for the degrading enzyme, monoacylglycerol lipase (MAGL), of the endocannabinoid, 2-arachidolyl glycerol (2-AG), in the hypothalamus of rats treated with 10 mg/kg THC. No changes in the expression of relevant genes were found in nausea (interoceptive insular cortex) or vomiting (dorsal vagal complex) related brain regions. These findings support the hypothesis that THC-induced nausea is a result of a dysregulated hypothalamic-pituitary-adrenal axis leading to an overactive stress response.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Dronabinol/administración & dosificación , Dronabinol/farmacología , Endocannabinoides/biosíntesis , Glicéridos/biosíntesis , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Monoacilglicerol Lipasas/biosíntesis , Náusea/prevención & control , Animales , Corteza Cerebral/metabolismo , Relación Dosis-Respuesta a Droga , Dronabinol/antagonistas & inhibidores , Masculino , Náusea/inducido químicamente , Ratas , Rimonabant/farmacología , Nervio Vago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA