Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400311

RESUMEN

Soil is a vital component of the ecosystem that drives the holistic homeostasis of the environment. Directly, soil quality and health by means of sufficient levels of soil nutrients are required for sustainable agricultural practices for ideal crop yield. Among these groups of nutrients, soil carbon is a factor which has a dominating effect on greenhouse carbon phenomena and thereby the climate change rate and its influence on the planet. It influences the fertility of soil and other conditions like enriched nutrient cycling and water retention that forms the basis for modern 'regenerative agriculture'. Implementation of soil sensors would be fundamentally beneficial to characterize the soil parameters in a local as well as global environmental impact standpoint, and electrochemistry as a transduction mode is very apt due to its feasibility and ease of applicability. Organic Matter present in soil (SOM) changes the electroanalytical behavior of moieties present that are carbon-derived. Hence, an electrochemical-based 'bottom-up' approach is evaluated in this study to track soil organic carbon (SOC). As part of this setup, soil as a solid-phase electrolyte as in a standard electrochemical cell and electrode probes functionalized with correlated ionic species on top of the metalized electrodes are utilized. The surficial interface is biased using a square pulsed charge, thereby studying the effect of the polar current as a function of the SOC profile. The sensor formulation composite used is such that materials have higher capacity to interact with organic carbon pools in soil. The proposed sensor platform is then compared against the standard combustion method for SOC analysis and its merit is evaluated as a potential in situ, on-demand electrochemical soil analysis platform.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37356818

RESUMEN

Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat-based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real-time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra-low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat-based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Sudor/química , Sudor/metabolismo , Biomarcadores/análisis
3.
ACS Omega ; 6(9): 6031-6040, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33718694

RESUMEN

This article discusses the emergent biosensor technology focused on continuous biosensing of metabolites by non-invasive sampling of body fluids emphasized on physiological monitoring in mobility-constrained populations, resource-challenged settings, and harsh environments. The boom of innovative ideas and endless opportunities in healthcare technologies has transformed traditional medicine into a sustainable link between medical practitioners and patients to provide solutions for faster disease diagnosis. The future of healthcare is focused on empowering users to manage their own health. The confluence of big data and predictive analysis and the internet of things (IoT) technology have shown the potential of converting the abundant health profile data amassed from medical diagnosis of patients into useable information, whilst allowing caregivers to provide suitable treatment plans. The implementation of the IoT technology has opened up advanced approaches in real-time, continuous, remote monitoring of patients. Wearable, point-of-care biosensors are the future roadmap to providing direct, real-time information of health status to the user and medical professionals in this digitized era.

4.
Future Cardiol ; 14(2): 131-141, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29388803

RESUMEN

AIM: Development of a label-free multiplexed point-of-care diagnostic device for a panel of cardiac biomarkers - cardiac troponin-T (cTnT), troponin-I (cTnI) and B-type natriuretic peptide (BNP). METHODS: A nonfaradaic electrochemical immunoassay designed with anisotropic high surface area ZnO nanostructures grown using low-temperature hydrothermal methods was selectively immobilized with capture antibodies. Multiplexed detection in human serum using ZnO nanostructures based on complementary electrochemical measurement techniques - electrochemical impedance spectroscopy and Mott-Schottky. RESULTS: Linear signal response for detection of three biomarkers in human serum with dynamic range of 1 pg/ml-100 ng/ml and limit of detection at 1 pg/ml and low signal response to background interferences was achieved. CONCLUSION: First demonstration of simultaneous detection of three cardiac biomarkers in clinically relevant range with sensor's analytical performance and linear response of detection showed potential utility in screening clinical samples for early diagnosis of acute myocardial infarction and chronic heart failure.


Asunto(s)
Espectroscopía Dieléctrica/métodos , Infarto del Miocardio/sangre , Nanoestructuras , Péptido Natriurético Encefálico/sangre , Troponina I/sangre , Troponina T/sangre , Óxido de Zinc , Biomarcadores/sangre , Humanos , Infarto del Miocardio/diagnóstico , Reproducibilidad de los Resultados
5.
Artículo en Inglés | MEDLINE | ID: mdl-14609066

RESUMEN

Piezoelectric thin film zinc oxide (ZnO) and its ternary alloy magnesium zinc oxide (MgxZn1-xO) have broad applications in transducers, resonators, and filters. In this work, we present a new bulk acoustic wave (BAW) structure consisting of Al/MgxZn1-xO/n(+)-ZnO/r-sapphire, where Al and n+ type ZnO serve as the top and bottom electrode, respectively. The epitaxial MgxZn1-xO films have the same epitaxial relationships with the substrate as ZnO on r-Al2O3, resulting in the c-axis of the MgxZn1-xO being in the growth plane. This relationship promotes shear bulk wave propagation that affords sensing in liquid phase media without the dampening effects found in longitudinal wave mode BAW devices. The BAW velocity and electromechanical coupling coefficient of MgxZn1-xO can be tailored by varying the Mg composition, which provides an alternative and complementary method to adjust the BAW characteristics by changing the piezoelectric film thickness. This provides flexibility to design the operating frequencies of thin film bulk acoustic wave devices. Frequency responses of devices with two acoustic wave modes propagating in the specified structure are analyzed using a transmission line model. Measured results show good agreement with simulation.


Asunto(s)
Acústica/instrumentación , Electroquímica/instrumentación , Compuestos de Magnesio/química , Modelos Químicos , Transductores , Óxido de Zinc/química , Simulación por Computador , Impedancia Eléctrica , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Compuestos de Magnesio/síntesis química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Óxido de Zinc/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA