Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 62(8): e1700856, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29476602

RESUMEN

SCOPE: The primary disorder underlying metabolic syndrome is insulin resistance due to excess body weight and abdominal visceral fat accumulation. In this study, it is asked if dietary intake of an ethanolic extract from Russian tarragon (Artemisia dracunculus L., termed PMI5011), shown to improve glucose utilization by enhancing insulin signaling in skeletal muscle, could prevent obesity-induced insulin resistance, skeletal muscle metabolic inflexibility, and ectopic lipid accumulation in the skeletal muscle and liver. METHODS AND RESULTS: Male wild-type mice are fed a high-fat diet alone or supplemented with PMI5011 (1% w/w) over 3 months. Dietary intake of PMI5011 improved fatty acid oxidation and metabolic flexibility in the skeletal muscle, reduced insulin levels, and enhanced insulin signaling in the skeletal muscle and liver independent of robust changes in expression of factors that control fatty acid oxidation. This corresponds with significantly reduced lipid accumulation in the skeletal muscle and liver, although body weight gain is comparable to a high-fat diet alone. CONCLUSION: Previous studies showed that PMI5011 enhances insulin sensitivity in the setting of established obesity-induced insulin resistance. The current study demonstrates that dietary intake of PMI5011 prevents high-fat diet-induced insulin resistance, metabolic dysfunction, and ectopic lipid accumulation in the skeletal muscle and liver without reducing body weight.


Asunto(s)
Artemisia/química , Suplementos Dietéticos , Metabolismo de los Lípidos , Lipotrópicos/uso terapéutico , Músculo Esquelético/metabolismo , Obesidad/terapia , Extractos Vegetales/uso terapéutico , Adiposidad , Animales , Fármacos Antiobesidad/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Regulación de la Expresión Génica , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/patología , Especificidad de Órganos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria
2.
Sci Rep ; 7(1): 12770, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986580

RESUMEN

To assess the metabolically beneficial effects of fenugreek (Trigonella foenum-graecum), C57BL/6J mice were fed a low- or high-fat diet for 16 weeks with or without 2% (w/w) fenugreek supplementation. Body weight, body composition, energy expenditure, food intake, and insulin/glucose tolerance were measured regularly, and tissues were collected for histological and biochemical analysis after 16 weeks of diet exposure. Fenugreek did not alter body weight, fat mass, or food intake in either group, but did transiently improve glucose tolerance in high fat-fed mice. Fenugreek also significantly improved high-density lipoprotein to low-density lipoprotein ratios in high fat-fed mice without affecting circulating total cholesterol, triglycerides, or glycerol levels. Fenugreek decreased hepatic expression of fatty acid-binding protein 4 and increased subcutaneous inguinal adipose tissue expression of adiponectin, but did not prevent hepatic steatosis. Notably, fenugreek was not as effective at improving glucose tolerance as was four days of voluntary wheel running. Overall, our results demonstrate that fenugreek promotes metabolic resiliency via significant and selected effects on glucose regulation, hyperlipidemia, and adipose pathology; but may not be as effective as behavioral modifications at preventing the adverse metabolic consequences of a high fat diet.


Asunto(s)
Biomarcadores/metabolismo , Dieta Alta en Grasa , Suplementos Dietéticos , Conducta Alimentaria , Salud , Metabolismo , Trigonella/química , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Adiposidad , Animales , Glucemia/metabolismo , Peso Corporal , Epidídimo/metabolismo , Ácido Graso Sintasas/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/patología , Inflamación/patología , Insulina/sangre , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Masculino , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Triglicéridos/sangre
3.
Nutrition ; 30(7-8 Suppl): S26-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24985102

RESUMEN

OBJECTIVE: The gut microbiome has been implicated in obesity and metabolic syndrome; however, most studies have focused on fecal or colonic samples. Several species of Artemisia have been reported to ameliorate insulin signaling both in vitro and in vivo. The aim of this study was to characterize the mucosal and luminal bacterial populations in the terminal ileum with or without supplementation with Artemisia extracts. METHODS: Following 4 wk of supplementation with different Artemisia extracts (PMI 5011, Santa or Scopa), diet-induced obese mice were sacrificed and luminal and mucosal samples of terminal ileum were used to evaluate microbial community composition by pyrosequencing of 16 S rDNA hypervariable regions. RESULTS: Significant differences in community structure and membership were observed between luminal and mucosal samples, irrespective of diet group. All Artemisia extracts increased the Bacteroidetes to Firmicutes ratio in mucosal samples. This effect was not observed in the luminal compartment. There was high interindividual variability in the phylogenetic assessments of the ileal microbiota, limiting the statistical power of this pilot investigation. CONCLUSIONS: Marked differences in bacterial communities exist depending on the biogeographic compartment in the terminal ileum. Future studies testing the effects of Artemisia or other botanical supplements require larger sample sizes for adequate statistical power.


Asunto(s)
Artemisia , Suplementos Dietéticos , Íleon/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Microbiota/efectos de los fármacos , Obesidad/microbiología , Extractos Vegetales/farmacología , Animales , Bacteroidetes , Dieta , Íleon/microbiología , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Filogenia
4.
PLoS One ; 7(8): e41709, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22936979

RESUMEN

BACKGROUND: How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain), the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs), shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice. METHODOLOGY/PRINCIPAL FINDINGS: We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF) or low-fat (LF) diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917) and Acads+/+ HF vs. LF Acads+/+ (3879) revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP. CONCLUSIONS: Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy-sensing mechanism linking fatty acid oxidation to feeding behavior in this model.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/efectos de los fármacos , Acil-CoA Deshidrogenasa/genética , Adenosina Trifosfato/metabolismo , Animales , Encéfalo , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Mutantes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
5.
Cell Metab ; 15(5): 764-77, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560225

RESUMEN

The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility.


Asunto(s)
Carnitina O-Acetiltransferasa/deficiencia , Carnitina O-Acetiltransferasa/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Acetilcoenzima A/metabolismo , Acetilcarnitina/metabolismo , Animales , Carbono/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Células Cultivadas , Metabolismo Energético , Ácidos Grasos/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Mitocondrias/metabolismo
6.
Diabetes Metab Res Rev ; 25 Suppl 1: S45-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19662615

RESUMEN

Studies in humans and animals demonstrate that "lipid over supply" causes or worsens insulin resistance via multiple mechanisms involving the accumulation of intracellular lipids in multiple tissues. In particular, the accumulation of fatty acyl CoA derivatives/metabolites in muscle inhibits both insulin signaling and glucose oxidation. Therefore agents that ameliorate the accumulation of fatty acyl CoA derivatives and/or their metabolites would be beneficial in the treatment or prevention of insulin resistance and T2D. Hyperinsulemic/euglycemic clamp studies in humans and carnitine supplementation studies in rodents provide "proof-of-concept" that carnitine is effective at improving insulin-stimulated glucose utilization and in reversing abnormalities of fuel metabolism associated with T2D. Carefully controlled clinical trials are warranted to determine the efficacy dietary carnitine supplementation as an adjunctive treatment for type 2 diabetes.


Asunto(s)
Carnitina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Acilcoenzima A/metabolismo , Animales , Carnitina/administración & dosificación , Carnitina/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Dieta para Diabéticos , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Resistencia a la Insulina , Lípidos/fisiología , Ratones , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA