Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Science ; 381(6660): 891-897, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616352

RESUMEN

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Asunto(s)
Phytophthora infestans , Inmunidad de la Planta , Receptores Inmunológicos , Solanum tuberosum , Ligandos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
2.
PLoS Pathog ; 17(4): e1009477, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857257

RESUMEN

The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.


Asunto(s)
Phytophthora/patogenicidad , Enfermedades de las Plantas/prevención & control , Pythium/patogenicidad , Solanum tuberosum/genética , Simulación de Dinámica Molecular , Necrosis , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Pythium/genética , Solanum tuberosum/parasitología , Resonancia por Plasmón de Superficie , Nicotiana/genética , Nicotiana/parasitología
3.
J Biol Chem ; 286(49): 42585-42593, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21994936

RESUMEN

Transglutaminases (TGases) are ubiquitous enzymes that catalyze selective cross-linking between protein-bound glutamine and lysine residues; the resulting isopeptide bond confers high resistance to proteolysis. Phytophthora sojae, a pathogen of soybean, secretes a Ca(2+)-dependent TGase (GP42) that is activating defense responses in both host and non-host plants. A GP42 fragment of 13 amino acids, termed Pep-13, was shown to be absolutely indispensable for both TGase and elicitor activity. GP42 does not share significant primary sequence similarity with known TGases from mammals or bacteria. This suggests that GP42 has evolved novel structural and catalytic features to support enzymatic activity. We have solved the crystal structure of the catalytically inactive point mutant GP42 (C290S) at 2.95 Å resolution and identified residues involved in catalysis by mutational analysis. The protein comprises three domains that assemble into an elongated structure. Although GP42 has no structural homolog, its core region displays significant similarity to the catalytic core of the Mac-1 cysteine protease from Group A Streptococcus, a member of the papain-like superfamily of cysteine proteases. Proteins that are taxonomically related to GP42 are only present in plant pathogenic oomycetes belonging to the order of the Peronosporales (e.g. Phytophthora, Hyaloperonospora, and Pythium spp.) and in marine Vibrio bacteria. This suggests that a lateral gene transfer event may have occurred between bacteria and oomycetes. Our results offer a basis to design and use highly specific inhibitors of the GP42-like TGase family that may impair the growth of important oomycete and bacterial pathogens.


Asunto(s)
Oomicetos/metabolismo , Phytophthora/genética , Vibrio/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X/métodos , Análisis Mutacional de ADN , Evolución Molecular , Inmunidad Innata , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Petroselinum/microbiología , Filogenia , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Solanum tuberosum/microbiología , Transglutaminasas/metabolismo , Microbiología del Agua
4.
EMBO J ; 21(24): 6681-8, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12485989

RESUMEN

Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen-associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep-13, constitutes a surface-exposed fragment within a novel calcium-dependent cell wall transglutaminase (TGase) from Phytophthora sojae. TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep-13 identified the same amino acids indispensable for both TGase and defense-eliciting activity. Pep-13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus-specific recognition determinant for the activation of plant defense in host and non-host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.


Asunto(s)
Phytophthora/enzimología , Transglutaminasas/química , Transglutaminasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Northern Blotting , Secuencia Conservada , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Datos de Secuencia Molecular , Mutación , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Solanum tuberosum/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA