Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res ; 82(13): 2354-2356, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35788291

RESUMEN

Understanding how carcinogenesis can expose cancers to synthetically lethal vulnerabilities has been an essential underpinning of development of modern anticancer therapeutics. Isocitrate dehydrogenase wild-type (IDHWT) glioblastoma multiforme (GBM), which is known to have upregulated branched-chain amino acid transaminase 1 (BCAT1) expression, has not had treatments developed to the same extent as the IDH mutant counterpart, despite making up the majority of cases. In this issue, Zhang and colleagues utilize a metabolic screen to identify α-ketoglutarate (AKG) as a synthetically lethal treatment in conjunction with BCAT1 inhibition in IDHWT GBM. These treatments synergize in a multipronged approach that limits substrate catabolism and disrupts mitochondrial homeostasis through perturbing the balance of NAD+/NADH, leading to mTORC1 inhibition and a reduction of nucleotide biosynthesis. Based on these results, the authors propose combination treatment targeting branched chain amino acid catabolism as a potential option for patients with IDHWT GBM. See related article by Zhang et al., p. 2388.


Asunto(s)
Glioblastoma , Glioblastoma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/farmacología , Mutaciones Letales Sintéticas/efectos de los fármacos , Transaminasas/genética , Transaminasas/metabolismo
2.
Mol Syst Biol ; 10: 728, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24799285

RESUMEN

Glutamine can play a critical role in cellular growth in multiple cancers. Glutamine-addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence. Using isotope tracer and bioenergetic analysis, we found that low-invasive ovarian cancer (OVCA) cells are glutamine independent, whereas high-invasive OVCA cells are markedly glutamine dependent. Consistent with our findings, OVCA patients' microarray data suggest that glutaminolysis correlates with poor survival. Notably, the ratio of gene expression associated with glutamine anabolism versus catabolism has emerged as a novel biomarker for patient prognosis. Significantly, we found that glutamine regulates the activation of STAT3, a mediator of signaling pathways which regulates cancer hallmarks in invasive OVCA cells. Our findings suggest that a combined approach of targeting high-invasive OVCA cells by blocking glutamine's entry into the TCA cycle, along with targeting low-invasive OVCA cells by inhibiting glutamine synthesis and STAT3 may lead to potential therapeutic approaches for treating OVCAs.


Asunto(s)
Proliferación Celular , Metabolismo Energético/genética , Glutamina/metabolismo , Neoplasias Ováricas/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Pronóstico , Transducción de Señal/genética
3.
Biochim Biophys Acta ; 1817(11): 2060-71, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22842522

RESUMEN

Bioenergetic profiling of tumors is a new challenge of cancer research and medicine as therapies are currently being developed. Meanwhile, methodological means must be proposed to gather information on tumor metabolism in order to adapt these potential therapies to the bioenergetic specificities of tumors. Studies performed on tumors and cancer cell lines have shown that cancer cells bioenergetics is highly variable. This profile changes with microenvironmental conditions (eg. substrate availability), the oncogenes activated (and the tumor suppressors inactivated) and the interaction with the stroma (i.e. reverse Warburg effect). Here, we assessed the power of metabolic footprinting (MFP) to unravel the bioenergetics and associated anabolic changes induced by three oncogenes, c-Myc, KLF4 and Oct1. The MFP approach provides a quantitative analysis of the metabolites secreted and consumed by cancer cells. We used ultra performance liquid chromatography for quantifying the amino acid uptake and secretion. To investigate the potential oncogene-mediated alterations in mitochondrial metabolism, we measured oxygen consumption rate and ATP production as well as the glucose uptake and lactate release. Our findings show that c-Myc deficiency initiates the Warburg effect along with a reduction of mitochondrial respiration. KLF4 deficiency also stimulated glycolysis, albeit without cellular respiration impairment. In contrast, Oct1 deficiency reduced glycolysis and enhanced oxidative phosphorylation efficiency. MFP revealed that c-Myc, KLF4 and Oct1 altered amino acid metabolism with specific patterns. We identified isoleucine, α-aminoadipic acid and GABA (γ-aminoisobutyric acid) as biomarkers related. Our findings establish the impact of Oct1, KLF4 and c-Myc on cancer bioenergetics and evidence a link between oncosecretomics and cellular bioenergetics profile.


Asunto(s)
Ácido 2-Aminoadípico/análisis , Biomarcadores de Tumor/análisis , Metabolismo Energético , Isoleucina/análisis , Factores de Transcripción de Tipo Kruppel/fisiología , Neoplasias/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Ácido gamma-Aminobutírico/análisis , Animales , Células Cultivadas , Factor 4 Similar a Kruppel , Metabolómica , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA