Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630727

RESUMEN

Background: Lipoprotein lipase (LPL) deficiency is a genetic condition. Affected individuals typically develop symptoms related to severe and persistent hypertriglyceridemia, such as abdominal pain and recurrent pancreatitis, before 10 years of age. No pharmacological treatment sustainably lowering triglycerides (TGs) in LPL deficiency patients has been proven to be effective. This study investigated whether a long-chain triglyceride (LCT)-restricted, medium-chain triglyceride (MCT)-supplemented diet enables a meaningful reduction in TGs and reduces LPL-related symptoms in children with LPL deficiency. Methods: A single-center retrospective case series study of LPL deficiency patients treated at the Hospital of Sick Children between January 2000 and December 2022 was carried out. Data, extracted from hospital charts, included demographics, diagnosis confirmation, clinical and imaging observations, and biochemical profiles. Results: Seven patients with hypertriglyceridemia > 20 mmol/L suspected of an LPL deficiency diagnosis were included. Six patients had a confirmed molecular diagnosis of LPL deficiency, and one had glycogen storage disease type 1a (GSD1a). Clinical presentation was at a median of 30 days of age (range 1-105), and treatment start, excluding one late-treated patient, was at a median of 42 days (range 2-106). The observation and treatment period of the LPL patients was 48.0 patient years (median 7.1, range 4.3-15.5). The LCT-restricted and MCT-supplemented diet led to an immediate drop in TGs in six out of six LPL patients. TGs improved from a median of 40.9 mmol/L (range 11.4-276.5) pre-treatment to a median of 12.0 mmol/L (range 1.1-36.6) during treatment, total cholesterol from 7.6 mmol/L (4.9-27.0) to 3.9 mmol/L (1.7-8.2), and pancreatic lipase from 631 IU/L (30-1200) to 26.5 IU/L (5-289). In 48 patient years, there was only one complication of pancreatitis and no other disease-specific manifestations or complications. Catch-up growth was observed in one late-treated patient. All patients maintained normal growth and development. As expected, the diet failed to treat hypertriglyceridemia in the GSD1a patient. Conclusions: The dietary restriction of LCT in combination with MCT supplementation as long-term management of pediatric patients with LPL deficiency was feasible, well tolerated, and clinically effective in reducing TG levels and in preventing LPL-related complications.


Asunto(s)
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Humanos , Niño , Hiperlipoproteinemia Tipo I/tratamiento farmacológico , Estudios Retrospectivos , Dieta , Suplementos Dietéticos
2.
Elife ; 112022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35084335

RESUMEN

There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury.


Asunto(s)
Bacterias/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Microbioma Gastrointestinal , Hepatitis/metabolismo , Metilaminas/metabolismo , Animales , Etanol/efectos adversos , Femenino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
3.
Alcohol Clin Exp Res ; 43(9): 1848-1858, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237689

RESUMEN

BACKGROUND: Specific-sized species of the carbohydrate hyaluronan elicit a variety of cellular responses mediating tissue integrity and repair, as well as regulating inflammatory responses. Orally provided hyaluronan with an average molecular weight of 35 kDa (HA35) protects mice from short-term ethanol (EtOH)-induced liver injury. This protection was associated with maintenance of the colocalization of zonula occludens-1 (ZO-1) and occludin at tight junctions in the proximal colon. However, it is not known whether HA35 also protects other regions of the intestine or whether protection is due to a direct and/or indirect interaction of HA35 with the intestinal epithelium. METHODS: Female C57BL/6J mice were fed an EtOH containing diet or pair-fed control diet (4 days) and treated with or without HA35 via daily gavage during the last 3 days of EtOH feeding. Intestinal morphology and tight junction integrity were assessed. Differentiated Caco-2 cells were transfected or not with scrambled siRNA or siRNA targeting layilin, a hyaluronan receptor. Caco-2 cells were treated with or without HA35 prior to challenge with EtOH. Localization of tight junction proteins, fluorescein isothiocyanate (FITC)-dextran permeability, and transepithelial electrical resistance (TEER) were evaluated. RESULTS: While short-term EtOH did not result in any apparent changes in the gross morphology of the intestine, colocalization of ZO-1 and occludin at tight junctions was decreased in the proximal and distal colon. HA35 prevented these effects of EtOH. In differentiated Caco-2 cells, EtOH decreased the localization of ZO-1 and occludin at tight junctions and increased permeability of FITC-dextran. At higher concentrations, EtOH also decreased TEER. Pretreatment with HA35 prevented these changes. When the hyaluronan receptor layilin was knocked down in Caco-2 cells, HA35 no longer protected cells from EtOH-induced loss of tight junctions. CONCLUSIONS: Taken together, these data indicate that HA35 interacts with layilin on intestinal epithelial cells and maintains intestinal tight junction integrity during short-term EtOH exposure.


Asunto(s)
Ácido Hialurónico/uso terapéutico , Mucosa Intestinal/efectos de los fármacos , Hepatopatías Alcohólicas/prevención & control , Uniones Estrechas/efectos de los fármacos , Viscosuplementos/uso terapéutico , Animales , Células CACO-2 , Depresores del Sistema Nervioso Central/efectos adversos , Evaluación Preclínica de Medicamentos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Etanol/efectos adversos , Femenino , Humanos , Ácido Hialurónico/farmacología , Lectinas Tipo C/metabolismo , Ratones Endogámicos C57BL , Viscosuplementos/farmacología
4.
J Nutr Biochem ; 27: 16-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26365579

RESUMEN

Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.


Asunto(s)
Uniones Adherentes/efectos de los fármacos , Colon/efectos de los fármacos , Etanol/toxicidad , Hígado Graso/fisiopatología , Glutamina/administración & dosificación , Mucosa Intestinal/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Colon/fisiopatología , Femenino , Mucosa Intestinal/fisiopatología , Ratones , Ratones Endogámicos C57BL
5.
Alcohol Clin Exp Res ; 38(6): 1489-501, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24890666

RESUMEN

BACKGROUND: Excessive alcohol consumption leads to liver disease. Interorgan crosstalk contributes to ethanol (EtOH)-induced liver injury. EtOH exposure causes gut dysbiosis resulting in negative alterations in intestinal fermentation byproducts, particularly decreased luminal butyrate concentrations. Therefore, in the present work, we investigated the effect of butyrate supplementation, in the form of trybutyrin, as a prophylactic treatment against EtOH-induced gut injury. METHODS: C57BL/6J mice were treated with 3 different EtOH feeding protocols: chronic feeding (25 days, 32% of kcal), short-term (2 days, 32%), or acute single gavage (5 g/kg). Tributyrin (0.83 to 10 mM) was supplemented either into the liquid diet or by oral gavage. Intestinal expression of tight junction (TJ) proteins and a butyrate receptor and transporter were evaluated, as well as liver enzymes and inflammatory markers. RESULTS: All 3 EtOH exposure protocols reduced the expression and co-localization of TJ proteins (ZO-1, occludin) and the expression of a butyrate receptor (GPR109A) and transporter (SLC5A8) in the ileum and proximal colon. Importantly, tributyrin supplementation protected against these effects. Protection of the intestine with tributyrin supplementation was accompanied by mitigation of EtOH-induced increases in aspartate aminotransferase and inflammatory measures in the short-term and acute EtOH exposure protocols, but not after chronic EtOH feeding. CONCLUSIONS: These findings suggest that tributyrin supplementation could serve as a prophylactic treatment against gut injury caused by short-term EtOH exposure.


Asunto(s)
Enfermedades del Sistema Digestivo/inducido químicamente , Etanol/efectos adversos , Triglicéridos/uso terapéutico , Alanina Transaminasa/análisis , Animales , Colon/química , Colon/efectos de los fármacos , Suplementos Dietéticos , Enfermedades del Sistema Digestivo/prevención & control , Disbiosis/inducido químicamente , Disbiosis/prevención & control , Etanol/antagonistas & inhibidores , Hígado Graso/inducido químicamente , Hígado Graso/prevención & control , Femenino , Íleon/química , Íleon/efectos de los fármacos , Hígado/química , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Uniones Estrechas/análisis , Proteínas de Uniones Estrechas/metabolismo , Triglicéridos/análisis
6.
Free Radic Biol Med ; 69: 403-16, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24412858

RESUMEN

Chronic ethanol ingestion mildly damages liver through oxidative stress and lipid oxidation, which is ameliorated by dietary supplementation with the anti-inflammatory ß-amino acid taurine. Kidney, like liver, expresses cytochrome P450 2E1 that catabolizes ethanol with free radical formation, and so also may be damaged by ethanol catabolism. Sudden loss of kidney function, and not liver disease itself, foreshadows mortality in patients with alcoholic hepatitis [J. Altamirano, Clin. Gastroenterol. Hepatol. 2012, 10:65]. We found that ethanol ingestion in the Lieber-deCarli rat model increased kidney lipid oxidation, 4-hydroxynonenal protein adduction, and oxidatively truncated phospholipids that attract and activate leukocytes. Chronic ethanol ingestion increased myeloperoxidase-expressing cells in kidney and induced an inflammatory cell infiltrate. Apoptotic terminal deoxynucleotidyl transferase nick-end labeling-positive cells and active caspase-3 increased in kidney after ethanol ingestion, with reduced filtration with increased circulating blood urea nitrogen (BUN) and creatinine. These events were accompanied by release of albumin, myeloperoxidase, and the acute kidney injury biomarkers kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin, and cystatin c into urine. Taurine sequesters HOCl from myeloperoxidase of activated leukocytes, and taurine supplementation reduced renal lipid oxidation, reduced leukocyte infiltration, and reduced the increase in myeloperoxidase-positive cells during ethanol feeding. Taurine supplementation also normalized circulating BUN and creatinine levels and suppressed enhanced myeloperoxidase, albumin, KIM-1, and cystatin c in urine. Thus, chronic ethanol ingestion oxidatively damages kidney lipids and proteins, damages renal function, and induces acute kidney injury through an inflammatory cell infiltrate. The anti-inflammatory nutraceutical taurine effectively interrupts this ethanol-induced inflammatory cycle in kidney.


Asunto(s)
Lesión Renal Aguda/patología , Etanol/toxicidad , Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Taurina/antagonistas & inhibidores , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Antioxidantes/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Radicales Libres/metabolismo , Humanos , Inflamación/patología , Riñón/efectos de los fármacos , Riñón/enzimología , Riñón/patología , Peroxidación de Lípido/efectos de los fármacos , Ratas
7.
PLoS One ; 8(7): e69114, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874883

RESUMEN

UNLABELLED: The effect of moderate alcohol consumption on liver fibrosis is not well understood, but evidence suggests that adenosine may play a role in mediating the effects of moderate ethanol on tissue injury. Ethanol increases the concentration of adenosine in the liver. Adenosine 2A receptor (A2AR) activation is known to enhance hepatic stellate cell (HSC) activation and A2AR deficient mice are protected from fibrosis in mice. Making use of a novel mouse model of moderate ethanol consumption in which female C57BL/6J mice were allowed continued access to 2% (vol/vol) ethanol (11% calories) or pair-fed control diets for 2 days, 2 weeks or 5 weeks and superimposed with exposure to CCl4, we tested the hypothesis that moderate ethanol consumption increases fibrosis in response to carbon tetrachloride (CCl4) and that treatment of mice with an A2AR antagonist prevents and/or reverses this ethanol-induced increase in liver fibrosis. Neither the expression or activity of CYP2E1, required for bio-activation of CCl4, nor AST and ALT activity in the plasma were affected by ethanol, indicating that moderate ethanol did not increase the direct hepatotoxicity of CCl4. However, ethanol feeding enhanced HSC activation and exacerbated liver fibrosis upon exposure to CCl4. This was associated with an increased sinusoidal angiogenic response in the liver. Treatment with A2AR antagonist both prevented and reversed the ability of ethanol to exacerbate liver fibrosis. CONCLUSION: Moderate ethanol consumption exacerbates hepatic fibrosis upon exposure to CCl4. A2AR antagonism may be a potential pharmaceutical intervention to decrease hepatic fibrosis in response to ethanol.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Bebidas Alcohólicas/efectos adversos , Tetracloruro de Carbono/toxicidad , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Femenino , Cirrosis Hepática/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Aceite de Oliva , Aceites de Plantas , Purinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Hepatology ; 49(5): 1554-62, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19296466

RESUMEN

UNLABELLED: Chronic ethanol feeding decreases expression of adiponectin by adipocytes and circulating adiponectin. Adiponectin treatment during chronic ethanol feeding prevents liver injury in mice. Chronic ethanol feeding also increases oxidative and endoplasmic reticulum (ER) stress in adipose tissue. Here we tested the hypothesis that supplemental taurine, an amino acid that functions as a chemical chaperone/osmolyte and enhances cellular antioxidant activity, would prevent ethanol-induced decreases in adiponectin expression and attenuate liver injury. Serum adiponectin concentrations decreased as early as 4 to 7 days after feeding rats a 36% ethanol diet. This rapid decrease was associated with increased oxidative, but not ER, stress in subcutaneous adipose tissue. Taurine prevented ethanol-induced oxidative stress and increased inflammatory cytokine expression in adipose tissue. Ethanol feeding also rapidly decreased expression of transcription factors regulating adiponectin expression (CCAAT/enhancer binding protein alpha; peroxisome proliferator-activated receptor alpha/gamma) in subcutaneous adipose tissue. Taurine prevented the ethanol-induced decrease in CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor alpha, normalizing adiponectin messenger (m)RNA and serum adiponectin concentrations. In the liver, taurine prevented ethanol-induced oxidative stress and attenuated tumor necrosis factor alpha expression and steatosis, at least in part, by increasing expression of genes involved in fatty acid oxidation. CONCLUSION: In subcutaneous adipose tissue, taurine decreased ethanol-induced oxidative stress and cytokine expression, as well as normalized expression of adiponectin mRNA. Taurine prevented ethanol-induced decreases in serum adiponectin; normalized adiponectin was associated with a reduction in hepatic oxidative stress, tumor necrosis factor alpha expression, and steatosis. Taken together, these data demonstrate that taurine has important protective effects against ethanol-induced tissue injury in both adipose and liver tissue.


Asunto(s)
Adiponectina/sangre , Tejido Adiposo/metabolismo , Citocinas/metabolismo , Etanol/metabolismo , Hígado Graso/prevención & control , Taurina/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Suplementos Dietéticos , Etanol/toxicidad , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Taurina/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
9.
Hepatology ; 49(5): 1709-17, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19205032

RESUMEN

UNLABELLED: Ethanol-induced liver injury is characterized by increased formation of reactive oxygen species (ROS) and inflammatory cytokines, resulting in the development of hepatic steatosis, injury, and cell death by necrosis and apoptosis. Thioredoxin (Trx), a potent antioxidant and antiinflammatory molecule with antiapoptotic properties, protects animals from a number of inflammatory diseases. However, the effects of ethanol on Trx or its role in ethanol-induced liver injury are not known. Female C57BL/6 mice were allowed ad libitum access to a Lieber-deCarli ethanol diet with 5.4% of calories as ethanol for 2 days to acclimate them to the diet, followed by 2 days with 32.4% of calories as ethanol or pair-fed control diet. Hepatic Trx-1 was decreased by ethanol feeding; daily supplementation with recombinant human Trx (rhTrx) prevented this ethanol-induced decrease. Therefore, we tested the hypothesis that administration of rhTrx during ethanol exposure would attenuate ethanol-induced oxidative stress, inflammatory cytokine production, and apoptosis. Mice were treated with a daily intraperitoneal injection of either 5 g/kg of rhTrx or phosphate-buffered saline (PBS). CONCLUSION: Ethanol feeding increased accumulation of hepatic 4-hydroxynonenal protein adducts, expression of hepatic tumor necrosis factor alpha, and resulted in hepatic steatosis and increased plasma aspartate aminotransferase and alanine aminotransferase. In ethanol-fed mice, treatment with rhTrx reduced 4-hydroxynonenal adduct accumulation, inflammatory cytokine expression, decreased hepatic triglyceride, and improved liver enzyme profiles. Ethanol feeding also increased transferase-mediated dUTP-biotin nick-end labeling-positive cells, caspase-3 activity, and cytokeratin-18 staining in the liver. rhTrx treatment prevented these increases. In summary, rhTrx attenuated ethanol-induced increases in markers of oxidative stress, inflammatory cytokine expression, and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Etanol/farmacología , Hepatopatías Alcohólicas/prevención & control , Estrés Oxidativo/efectos de los fármacos , Tiorredoxinas/uso terapéutico , Animales , Citocinas/metabolismo , Femenino , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Tiorredoxinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA