Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299538

RESUMEN

Ginseng is one of the traditional herbal medicines for tonic. Gintonin is a new material derived from white/red ginseng and its lysophosphatidic acids (LPAs) play as a ligand for G protein-coupled LPA receptors. Korean red ginseng marc (KRGM) is a by-product after the KRG processes. We developed a low-cost/high-efficiency method for KRGM gintonin production. We further studied the KRGM gintonin-mediated anti-skin aging effects under UVB exposure using human dermal fibroblasts (HDFs). KRGM gintonin yield is about 8%. KRGM gintonin contains a high amount of LPA C18:2, lysophosphatidylcholine (LPC), and phosphatidylcholine (PC), which is similar to white ginseng gintonin. KRGM gintonin induced [Ca2+]i transient via LPA1/3 receptors and increased cell viability/proliferation under UVB exposure. The underlying mechanisms of these results are associated with the antioxidant action of KRGM gintonin. KRGM gintonin attenuated UVB-induced cell senescence by inhibiting cellular ß-galactosidase overexpression and facilitated wound healing. These results indicate that KRGM can be a novel bioresource of KRGM gintonin, which can be industrially utilized as new material for skin nutrition and/or skin healthcare.


Asunto(s)
Panax , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Receptores Acoplados a Proteínas G , Nutrientes
2.
J Ginseng Res ; 46(3): 337-347, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35233163

RESUMEN

Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

3.
Neoplasia ; 23(12): 1307-1317, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34798386

RESUMEN

Cancer cachexia is characterized by systemic inflammation, protein degradation, and loss of skeletal muscle. Despite extensive efforts to develop therapeutics, only few effective treatments are available to protect against cancer cachexia. Here, we found that gintonin (GT), a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, protected C2C12 myotubes from tumor necrosis factor α (TNFα)/interferon γ (IFNγ)- induced muscle wasting condition. The activity of GT was found to be dependent on LPAR/Gαi2, as the LPAR antagonist Ki16425 and Gαi2 siRNA abolished the anti-atrophic effects of GT on myotubes. GT suppressed TNFα-induced oxidative stress by reducing reactive oxygen species and suppressing inflammation-related genes, such as interleukin 6 (IL-6) and NADPH oxidase 2 (NOX-2). In addition, GT exhibited anti-atrophy effects in primary normal human skeletal myoblasts. Further, GT protected against Lewis lung carcinoma cell line (LLC1)-induced cancer cachexia in a mouse model. Specifically, GT rescued the lower levels of grip strength, hanging, and cross-sectional area caused by LLC1. Collectively, our findings suggest that GT may be a good therapeutic candidate for protecting against cancer cachexia.


Asunto(s)
Caquexia/patología , Músculo Esquelético/efectos de los fármacos , Neoplasias/complicaciones , Extractos Vegetales/farmacología , Animales , Caquexia/etiología , Humanos , Ratones , Atrofia Muscular/etiología
4.
Molecules ; 26(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34684879

RESUMEN

Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Panax/química , Extractos Vegetales/farmacología , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Glucagón/metabolismo , Humanos , Secreción de Insulina , Lisofosfolípidos , Masculino , Ratones , Ratones Endogámicos ICR , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
5.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34576317

RESUMEN

Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.


Asunto(s)
Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Extractos Vegetales/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Panax/química , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
6.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299412

RESUMEN

Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Supervivencia Celular , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Receptores del Ácido Lisofosfatídico/genética , Transducción de Señal
7.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281274

RESUMEN

It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.


Asunto(s)
Ginsenósidos/farmacología , Proteína Quinasa C-delta/metabolismo , Antagonistas de la Serotonina/farmacología , Síndrome de la Serotonina/prevención & control , Acetofenonas/farmacología , Anfetaminas/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Benzopiranos/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Proteína Quinasa C-delta/deficiencia , Proteína Quinasa C-delta/genética , Inhibidores de Proteínas Quinasas/farmacología , Serotonina/fisiología , Agonistas de Receptores de Serotonina/farmacología , Síndrome de la Serotonina/inducido químicamente , Síndrome de la Serotonina/fisiopatología
8.
J Ginseng Res ; 45(2): 264-272, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33841007

RESUMEN

BACKGROUND: Gintonin is a ginseng-derived exogenous G-protein-coupled lysophosphatidic acid (LPA) receptor ligand, which exhibits in vitro and in vivo functions against Alzheimer disease (AD) through lysophosphatidic acid 1/3 receptors. A recent study demonstrated that systemic treatment with gintonin enhances paracellular permeability of the blood-brain barrier (BBB) through the LPA1/3 receptor. However, little is known about whether gintonin can enhance brain delivery of donepezil (DPZ) (Aricept), which is a representative cognition-improving drug used in AD clinics. In the present study, we examined whether systemic administration of gintonin can stimulate brain delivery of DPZ. METHODS: We administered gintonin and DPZ alone or coadministered gintonin with DPZ intravenously or orally to rats. Then we collected the cerebral spinal fluid (CSF) and serum and determined the DPZ concentration through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. RESULTS: Intravenous, but not oral, coadministration of gintonin with DPZ increased the CSF concentration of DPZ in a concentration- and time-dependent manner. Gintonin-mediated enhancement of brain delivery of DPZ was blocked by Ki16425, a LPA1/3 receptor antagonist. Coadministration of vascular endothelial growth factor (VEGF) + gintonin with DPZ similarly increased CSF DPZ concentration. However, gintonin-mediated enhancement of brain delivery of DPZ was blocked by axitinip, a VEGF receptor antagonist. Mannitol, a BBB disrupting agent that increases the BBB permeability, enhanced gintonin-mediated enhancement of brain delivery of DPZ. CONCLUSIONS: We found that intravenous, but not oral, coadministration of gintonin facilitates brain delivery of DPZ from plasma via LPA1/3 and VEGF receptors. Gintonin is a potential candidate as a ginseng-derived novel agent for the brain delivery of DPZ for treatment of patients with AD.

9.
Acta Vet Hung ; 68(4): 364-369, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33570508

RESUMEN

It has been shown that gintonin, isolated from Panax ginseng, can promote rapid corneal wound healing. We aimed to elucidate the underlying mechanism and investigated whether gintonin affects the concentration of the extracellular matrix remodelling factor matrix metalloproteinase-9 (MMP-9) in tears during rabbit corneal wound healing in vivo. Twelve eyes (six rabbits) were divided equally into three groups. All eyes underwent corneal de-epithelialisation. The control group received Tearin Free sodium hyaluronate 0.1%, the solcoseryl group received solcoseryl-120 concentrate, and the gintonin group received 2.5 mg gintonin in sodium hyaluronate 0.1%. All preparations were administered for 5 days and the concentration of MMP-9 was measured in tears via ELISA on days 0, 1, and 5. MMP-9 concentrations in all groups were increased at day 1 and reduced at day 5. Of note, we found a significant change over the time frame for the gintonin group (P < 0.05) but not for the control or solcoseryl groups (P > 0.05) Moreover, increased MMP-9 levels between days 0 and 1, and their reduction between days 1 and 5, were significant in the gintonin group compared to those in the other groups (P < 0.05); however, and once more, these changes were not significant between the control and solcoseryl groups (P > 0.05). In conclusion, gintonin increases the concentration of MMP-9 rapidly within a day of injury, and decreasing it thereafter.


Asunto(s)
Córnea , Metaloproteinasa 9 de la Matriz , Animales , Extractos Vegetales , Conejos , Lágrimas , Cicatrización de Heridas
10.
Curr Mol Pharmacol ; 14(2): 200-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32329705

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder commonly found in children, which is recognized by hyperactivity and aggressive behavior. It is known that the pathophysiology of ADHD is associated with neurobiological dysfunction. Although psychostimulants are recognized as the therapeutic drugs of choice for ADHD patients, the side effects might be of great concern. Ginkgo biloba is a promising herbal, complementary supplement that may modulate the neuronal system in an ADHD-like condition. The beneficial effect of Ginkgo biloba on ADHD-like symptoms may be related to the modulation of the system by novel molecular mechanisms. Ginkgo biloba is known to modulate dopamine, serotonin, and norepinephrine signaling. Flavonoid glycosides and terpene trilactones are the two major phytochemical components present in the Ginkgo biloba preparations, which can exhibit antioxidant and neuroprotective activities. The pharmacological mechanisms of the phytochemical components may also contribute to the neuroprotective activity of Ginkgo biloba. In this review, we have summarized recent findings on the potential of various Ginkgo biloba preparations to treat ADHD-like symptoms. In addition, we have discussed the pharmacological mechanisms mediated by Ginkgo biloba against an ADHD-like condition.


Asunto(s)
Antioxidantes/química , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Ginkgo biloba/química , Fármacos Neuroprotectores/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Dopamina/metabolismo , Descubrimiento de Drogas , Flavonoides/química , Glicósidos/química , Humanos , Fármacos Neuroprotectores/farmacología , Norepinefrina/metabolismo , Serotonina/metabolismo , Transducción de Señal , Terpenos/química
11.
Integr Med Res ; 10(2): 100475, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33134079

RESUMEN

BACKGROUND: Recently, gintonin and gintonin-enriched fraction (GEF) have been isolated from ginseng, a herbal medicine. Gintonin induces [Ca2+]i transition in cultured hippocampal neurons and stimulates acetylcholine release through LPA receptor activation. Oral administration of GEF is linked to hippocampus-dependent cognitive enhancement and other neuroprotective effects; however, effects of its long-term administration on hippocampal gene expression remains unknown. Here, we used next-generation sequence (NGS) analysis to examine changes in hippocampal gene expressions after long-term oral administration of GEF. METHODS: C57BL/6 mice were divided into three groups: control group, GEF50 (GEF 50 mg/kg, p.o.), and GEF100 (GEF 100 mg/kg, p.o.). After 22 days, total RNA was extracted from mouse hippocampal tissues. NGS was used for gene expression profiling; quantitative-real-time PCR and western blot were performed to quantify the changes in specific genes and to confirm the protein expression levels in treatment groups. RESULTS: NGS analysis screened a total of 23,282 genes, analyzing 11-related categories. We focused on the neurogenesis category, which includes four genes for candidate markers: choline acetyltransferase (ChAT) gene, ß3-adrenergic receptor (Adrb3) gene, and corticotrophin-releasing hormone (Crh) gene, and tryptophan 2,3-dioxygenase (Tdo2) gene. Real-time PCR showed a marked overexpression of ChAT, Adrb3, and Crh genes, while reduced expression of Tdo2. Western blot analysis also confirmed increased ChAT and decreased Tdo2 protein levels. CONCLUSION: We found that GEF affects mouse hippocampal gene expressions, associated with memory, cognitive, anti-stress and anti-anxiety functions, and neurodegeneration at differential degree, that might explain the genetic bases of GEF-mediated neuroprotective effects.

12.
Food Chem Toxicol ; 148: 111945, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33359022

RESUMEN

Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Trastornos Mentales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección/fisiología , Animales , Azoles/uso terapéutico , Glutatión Peroxidasa/genética , Humanos , Rayos Infrarrojos , Isoindoles , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/terapia , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/terapia , Óxido Nítrico Sintasa de Tipo III/metabolismo , Compuestos de Organoselenio/uso terapéutico , Fototerapia , Proteína Quinasa C-delta/metabolismo , Receptor Muscarínico M1/metabolismo , Regulación hacia Arriba/efectos de la radiación , Glutatión Peroxidasa GPX1
13.
Brain Behav Immun ; 93: 384-398, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309911

RESUMEN

Gintonin (GT), a glycolipoprotein fraction isolated from ginseng, exerts neuroprotective effects in models of neurodegenerative diseases such as Alzheimer's disease. However, the in vivo role of GT in multiple sclerosis (MS) has not been clearly resolved. We investigated the effect of GT in myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. GT alleviated behavioral symptoms of EAE associated with reduced demyelination, diminished infiltration and activation of immune cells (microglia and macrophage), and decreased expression of inflammatory mediators in the spinal cord of the EAE group compared to that of the sham group. GT reduced the percentages of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells but increased the population of CD4+/CD25+/Foxp3+ (Treg) cells in the spinal cord, in agreement with altered mRNA expression of IFN-γ, IL-17, and TGF-ß in the spinal cord in concordance with mitigated blood-brain barrier disruption. The underlying mechanism is related to inhibition of the ERK and p38 mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways and the stabilization of nuclear factor erythroid 2-related factor 2 (Nrf2) via increased expression of lysophosphatidic acid receptor (LPAR) 1-3. Impressively, these beneficial effects of GT were completely neutralized by inhibiting LPARs with Ki16425, a LPAR1/3 antagonist. Our results strongly suggest that GT may be able to alleviate EAE due to its anti-inflammatory and antioxidant activities through LPARs. Therefore, GT is a potential therapeutic option for treating autoimmune disorders including MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Citocinas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , Factor 2 Relacionado con NF-E2 , Extractos Vegetales , Receptores del Ácido Lisofosfatídico , Médula Espinal
14.
Biomolecules ; 10(7)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679738

RESUMEN

Obesity is a major health concern and is becoming an increasingly serious societal problem worldwide. The browning of white adipocytes has received considerable attention because of its potential protective effect against obesity-related metabolic disease. The gintonin-enriched fraction (GEF) is a non-saponin, glycolipoprotein component of ginseng that is known to have neuroprotective and anti-inflammatory effects. However, the anti-obesity and browning effects of GEF have not been explored to date. Therefore, we aimed to determine whether GEF has a preventive effect against obesity. We differentiated 3T3-L1 cells and mouse primary subcutaneous adipocytes for 8 days in the presence or absence of GEF, and then measured the expression of intermediates in signaling pathways that regulate triglyceride (TG) synthesis and browning by Western blotting and immunofluorescence analysis. We found that GEF reduced lipid accumulation by reducing the expression of pro-adipogenic and lipogenic factors, and increased lipolysis and thermogenesis, which may be mediated by an increase in the phosphorylation of protein kinase A. These findings suggest that GEF may induce fat metabolism and energy expenditure in white adipocytes and therefore may represent a potential treatment for obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Metabolismo Energético , Ratones , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos
15.
Biomolecules ; 10(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131481

RESUMEN

Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, improves brain functions and protects neurons from oxidative stress. However, little is known about the effects of gintonin against Pb-induced brain maldevelopment. We investigated the protective effects of gintonin on the developing cerebellum after prenatal and postnatal Pb exposure. Pregnant female rats were randomly divided into three groups: control, Pb (0.3% Pb acetate in drinking water), and Pb plus gintonin (100 mg/kg, p.o.). Blood Pb was increased in dams and pups; gintonin treatment significantly decreased blood Pb. On postnatal day 21, the number of degenerating Purkinje cells was remarkably increased while the number of calbindin-, GAD67-, NMDAR1-, LPAR1-immunoreactive intact Purkinje cells, and GABA transporter 1-immunoreactive pinceau structures were significantly reduced in Pb-exposed offspring. Following Pb exposure, gintonin ameliorated cerebellar degenerative effects, restored increased pro-apoptotic Bax, and decreased anti-apoptotic Bcl2. Gintonin treatment attenuated Pb-induced accumulation of oxidative stress (Nrf2 and Mn-SOD) and inflammation (IL-1ß and TNFα,), restoring the decreased cerebellar BDNF and Sirt1. Gintonin ameliorated Pb-induced impairment of myelin basic protein-immunoreactive myelinated fibers of Purkinje cells. Gintonin attenuated Pb-induced locomotor dysfunctions. The present study revealed the ameliorating effects of gintonin against Pb, suggesting the potential use of gintonin as a preventive agent in Pb poisoning during pregnancy and lactation.


Asunto(s)
Lactancia/metabolismo , Intoxicación por Plomo , Exposición Materna/efectos adversos , Panax/química , Extractos Vegetales/farmacología , Células de Purkinje/metabolismo , Animales , Femenino , Intoxicación por Plomo/tratamiento farmacológico , Intoxicación por Plomo/embriología , Intoxicación por Plomo/patología , Extractos Vegetales/química , Embarazo , Células de Purkinje/patología , Ratas
16.
Molecules ; 25(5)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32121640

RESUMEN

Gintonin, a novel ginseng-derived glycolipoprotein complex, has an exogenous ligand for lysophosphatidic acid (LPA) receptors. However, recent lipid analysis of gintonin has shown that gintonin also contains other bioactive lipids besides LPAs, including linoleic acid and lysophosphatidylinositol (LPI). Linoleic acid, a free fatty acid, and LPI are known as ligands for the G-protein coupled receptors (GPCR), GPR40, and GPR55, respectively. We, herein, investigated whether gintonin could serve as a ligand for GPR40 and GPR55, using the insulin-secreting beta cell-derived cell line INS-1 and the human prostate cancer cell line PC-3, respectively. Gintonin dose-dependently enhanced insulin secretion from INS-1 cells. Gintonin-stimulated insulin secretion was partially inhibited by a GPR40 receptor antagonist but not an LPA1/3 receptor antagonist and was down-regulated by small interfering RNA (siRNA) against GPR40. Gintonin dose-dependently induced [Ca2+]i transients and Ca2+-dependent cell migration in PC-3 cells. Gintonin actions in PC-3 cells were attenuated by pretreatment with a GPR55 antagonist and an LPA1/3 receptor antagonist or by down-regulating GPR55 with siRNA. Taken together, these results demonstrated that gintonin-mediated insulin secretion by INS-1 cells and PC-3 cell migration were regulated by the respective activation of GPR40 and GPR55 receptors. These findings indicated that gintonin could function as a ligand for both receptors. Finally, we demonstrated that gintonin contained two more GPCR ligands, in addition to that for LPA receptors. Gintonin, with its multiple GPCR ligands, might provide the molecular basis for the multiple pharmacological actions of ginseng.


Asunto(s)
Panax/química , Extractos Vegetales/farmacología , Receptores de Cannabinoides , Receptores Acoplados a Proteínas G/agonistas , Animales , Señalización del Calcio/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Secreción de Insulina/efectos de los fármacos , Ligandos , Células PC-3 , Extractos Vegetales/química , Ratas , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
Molecules ; 25(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106493

RESUMEN

Heat stress can be caused by various environmental factors. When exposed to heat stress, oxidative stress and inflammatory reaction occur due to an increase of reactive oxygen species (ROS) in the body. In particular, inflammatory responses induced by heat stress are common in muscle cells, which are the most exposed to heat stress and directly affected. Gintonin-Enriched Fraction (GEF) is a non-saponin component of ginseng, a glycolipoprotein. It is known that it has excellent neuroprotective effects, therefore, we aimed to confirm the protective effect against heat stress by using GEF. C2C12 cells were exposed to high temperature stress for 1, 12 and 15 h, and the expression of signals was analyzed over time. Changes in the expression of the factors that were observed under heat stress were confirmed at the protein level. Exposure to heat stress increases phosphorylation of p38 and extracellular signal-regulated kinase (ERK) and increases expression of inflammatory factors such as NLRP3 inflammasome through lysophosphatidic acid (LPA) receptor. Activated inflammatory signals also increase the secretion of inflammatory cytokines such as interleukin 6 (IL-6) and interleukin 18 (IL-18). Also, expression of glutathione reductase (GR) and catalase related to oxidative stress is increased. However, it was confirmed that the changes due to the heat stress were suppressed by the GEF treatment. Therefore, we suggest that GEF helps to protect heat stress in muscle cell and prevent tissue damage by oxidative stress and inflammation.


Asunto(s)
Inflamación/tratamiento farmacológico , Panax/química , Extractos Vegetales/farmacología , Receptores del Ácido Lisofosfatídico/genética , Animales , Calcio/metabolismo , Línea Celular , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Humanos , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-32013120

RESUMEN

Gintonin is a newly discovered ingredient of ginseng and plays an exogenous ligand for G protein-coupled lysophosphatidic acid receptors. We previously showed that gintonin exhibits diverse effects from neurotransmitter release to improvement of Alzheimer's disease-related cognitive dysfunctions. However, previous studies did not show whether gintonin has protective effects against environmental heavy metal. We investigated the effects of gintonin-enriched fraction (GEF) on methylmercury (MeHg)-induced neurotoxicity and learning and memory dysfunction and on organ MeHg elimination. Using hippocampal neural progenitor cells (hNPCs) and mice we examined the effects of GEF on MeHg-induced hippocampal NPC neurotoxicity, on formation of reactive oxygen species (ROS), and on in vivo learning and memory functions after acute MeHg exposure. Treatment of GEF to hNPCs attenuated MeHg-induced neurotoxicity with concentration- and time-dependent manner. GEF treatment inhibited MeHg- and ROS inducer-induced ROS formations. Long-term treatment of GEF also improved MeHg-induced learning and memory dysfunctions. Oral administration of GEF decreased the concentrations of MeHg in blood, brain, liver, and kidney. This is the first report that GEF attenuated MeHg-induced in vitro and in vivo neurotoxicities through LPA (lysophosphatidic acids) receptor-independent manner and increased organ MeHg elimination. GEF-mediated neuroprotection might achieve via inhibition of ROS formation and facilitation of MeHg elimination from body.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Compuestos de Metilmercurio/toxicidad , Panax/química , Extractos Vegetales/uso terapéutico , Animales , Disfunción Cognitiva/inducido químicamente , Femenino , Ratones , Ratones Endogámicos C57BL , Receptores del Ácido Lisofosfatídico
19.
Molecules ; 24(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817172

RESUMEN

Gintonin is a newly discovered component of ginseng and acts as a ligand for G protein-coupled lysophosphatidic acid (LPA) receptors. It is currently unclear whether gintonin has skin-related effects. Here, we examined the effects of a gintonin-enriched fraction (GEF) on [Ca2+]i transient induction in human dermal fibroblasts (HDFs). We found that GEF treatment transiently induced [Ca2+]i in a dose-dependent manner. GEF also increased cell viability and proliferation, which could be blocked by Ki16425, an LPA1/3 receptor antagonist, or 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a calcium chelator. We further found that GEF stimulated hyaluronic acid (HA) release from HDFs in a dose- and time-dependent manner, which could be attenuated by Ki16425, U73122, a phospholipase C inhibitor, 2-Aminoethoxydiphenyl borate (2-APB), an IP3 receptor antagonist, and BAPTA-AM. Moreover, we found that GEF increased HA synthase 1 (HAS1) expression in a time-dependent manner. We also found that GEF stimulates collagen release and the expression of collagen 1, 3, and 7 synthases in a time-dependent manner. GEF-mediated collagen synthesis could be blocked by Ki16425, U73122, 2-APB, and BAPTA-AM. GEF treatment also increased the mRNA levels of LPA1-6 receptor subtypes at 8 h and increased the protein levels of LPA1-6 receptor subtypes at 8 h. Overall, these results indicate that the GEF-mediated transient induction of [Ca2+]i is coupled to HA and collagen release from HDFs via LPA receptor regulations. We can, thus, conclude that GEF might exert a beneficial effect on human skin physiology via LPA receptors.


Asunto(s)
Colágeno/metabolismo , Dermis/citología , Fibroblastos/metabolismo , Ácido Hialurónico/metabolismo , Panax/química , Extractos Vegetales/farmacología , Receptores del Ácido Lisofosfatídico/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Hialuronano Sintasas/metabolismo
20.
J Ginseng Res ; 43(2): 209-217, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30962735

RESUMEN

BACKGROUND: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. METHODS: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. RESULTS: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEF-mediated insulin secretion was not blocked by LPA receptor antagonist. CONCLUSION: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA